Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903855273> ?p ?o ?g. }
- W2903855273 abstract "Finite State Machine (FSM) is known to be embarrassingly sequential because the next state depends on the current state and input symbol. Enumerative FSM breaks the data dependencies by cutting the input symbols into segments and processing all segments in parallel. With unknown starting state (except the first segment), each segment needs to calculate the state transitions, i.e., state→state, for all states, each one is called an enumeration path. The current software and hardware implementations suffer from two drawbacks: 1. large amount of state→state computation for the enumeration paths; and 2. the optimizations are restricted by the need to correctly performing state→state and only achieve limited improvements. This paper proposes CSE, Convergence Set Enumeration based parallel FSM. Unlike prior approaches, CSE is based on a novel computation primitive set→set, which maps N states to M states without giving the specific state→state mappings (which state is mapped to which). The set→set has two key properties: 1. if M is equal to 1, i.e., all N states are mapped to the same state, the state→state for all the N states are computed; 2. using one-hot encoding, the hardware implementation cost of state→state is the same as set→set. The convergence property ensures that M is always less than N. The key idea of CSE is to partition the original all S states into n state sets i.e., convergence sets. Using set→set to process each CS if the states converge to a single state, then we have successfully computed the enumeration path for each state in CS; otherwise, we may need to re-execute the stage when the outcome of the previous stage falls in CS. CSE is realized by two techniques: 1. convergence set prediction, which generates the convergence sets with random input based profiling that maximizes the probability of each CS converging to one state; 2. global re-execution algorithm, which ensures the correctness by re-executing the non-converging stages with known input state. Essentially, CSE reformulates the enumeration paths as set-based rather than singleton-based. %Given a sequence of input symbols, a set FSM maps a state set of N states to another state set of M states without computing any enumeration path. We evaluate CSE with 13 benchmarks. It achieved on average 2.0/2.4x and maximum 8.6/2.7x speedup compared to Lookback Enumeration and Parallel Automata Processor, respectively." @default.
- W2903855273 created "2018-12-22" @default.
- W2903855273 creator A5008484923 @default.
- W2903855273 creator A5025596795 @default.
- W2903855273 creator A5026252669 @default.
- W2903855273 creator A5047215143 @default.
- W2903855273 creator A5051409603 @default.
- W2903855273 creator A5071200777 @default.
- W2903855273 creator A5074183877 @default.
- W2903855273 date "2018-10-01" @default.
- W2903855273 modified "2023-09-23" @default.
- W2903855273 title "CSE: Parallel Finite State Machines with Convergence Set Enumeration" @default.
- W2903855273 cites W1489391022 @default.
- W2903855273 cites W1548569630 @default.
- W2903855273 cites W1934057878 @default.
- W2903855273 cites W1967810725 @default.
- W2903855273 cites W2015535429 @default.
- W2903855273 cites W2030102079 @default.
- W2903855273 cites W2030377171 @default.
- W2903855273 cites W2040976214 @default.
- W2903855273 cites W2044242345 @default.
- W2903855273 cites W2050820113 @default.
- W2903855273 cites W2056954049 @default.
- W2903855273 cites W2062949766 @default.
- W2903855273 cites W2068361557 @default.
- W2903855273 cites W2070988554 @default.
- W2903855273 cites W2097118641 @default.
- W2903855273 cites W2110052743 @default.
- W2903855273 cites W2132774949 @default.
- W2903855273 cites W2135039871 @default.
- W2903855273 cites W2143462372 @default.
- W2903855273 cites W2149225459 @default.
- W2903855273 cites W2166588729 @default.
- W2903855273 cites W2174629870 @default.
- W2903855273 cites W2236895266 @default.
- W2903855273 cites W2293046879 @default.
- W2903855273 cites W2416036494 @default.
- W2903855273 cites W2438952228 @default.
- W2903855273 cites W2470528519 @default.
- W2903855273 cites W2478089729 @default.
- W2903855273 cites W2507706987 @default.
- W2903855273 cites W2529090470 @default.
- W2903855273 cites W2567435594 @default.
- W2903855273 cites W2580280030 @default.
- W2903855273 cites W2617288171 @default.
- W2903855273 cites W2728529009 @default.
- W2903855273 cites W2761621268 @default.
- W2903855273 cites W2766073137 @default.
- W2903855273 cites W68874664 @default.
- W2903855273 cites W2077831311 @default.
- W2903855273 doi "https://doi.org/10.1109/micro.2018.00012" @default.
- W2903855273 hasPublicationYear "2018" @default.
- W2903855273 type Work @default.
- W2903855273 sameAs 2903855273 @default.
- W2903855273 citedByCount "3" @default.
- W2903855273 countsByYear W29038552732019 @default.
- W2903855273 countsByYear W29038552732021 @default.
- W2903855273 countsByYear W29038552732022 @default.
- W2903855273 crossrefType "proceedings-article" @default.
- W2903855273 hasAuthorship W2903855273A5008484923 @default.
- W2903855273 hasAuthorship W2903855273A5025596795 @default.
- W2903855273 hasAuthorship W2903855273A5026252669 @default.
- W2903855273 hasAuthorship W2903855273A5047215143 @default.
- W2903855273 hasAuthorship W2903855273A5051409603 @default.
- W2903855273 hasAuthorship W2903855273A5071200777 @default.
- W2903855273 hasAuthorship W2903855273A5074183877 @default.
- W2903855273 hasConcept C11413529 @default.
- W2903855273 hasConcept C114614502 @default.
- W2903855273 hasConcept C118615104 @default.
- W2903855273 hasConcept C156340839 @default.
- W2903855273 hasConcept C162324750 @default.
- W2903855273 hasConcept C167822520 @default.
- W2903855273 hasConcept C177264268 @default.
- W2903855273 hasConcept C199360897 @default.
- W2903855273 hasConcept C2777303404 @default.
- W2903855273 hasConcept C33923547 @default.
- W2903855273 hasConcept C41008148 @default.
- W2903855273 hasConcept C42812 @default.
- W2903855273 hasConcept C48103436 @default.
- W2903855273 hasConcept C50522688 @default.
- W2903855273 hasConcept C80444323 @default.
- W2903855273 hasConceptScore W2903855273C11413529 @default.
- W2903855273 hasConceptScore W2903855273C114614502 @default.
- W2903855273 hasConceptScore W2903855273C118615104 @default.
- W2903855273 hasConceptScore W2903855273C156340839 @default.
- W2903855273 hasConceptScore W2903855273C162324750 @default.
- W2903855273 hasConceptScore W2903855273C167822520 @default.
- W2903855273 hasConceptScore W2903855273C177264268 @default.
- W2903855273 hasConceptScore W2903855273C199360897 @default.
- W2903855273 hasConceptScore W2903855273C2777303404 @default.
- W2903855273 hasConceptScore W2903855273C33923547 @default.
- W2903855273 hasConceptScore W2903855273C41008148 @default.
- W2903855273 hasConceptScore W2903855273C42812 @default.
- W2903855273 hasConceptScore W2903855273C48103436 @default.
- W2903855273 hasConceptScore W2903855273C50522688 @default.
- W2903855273 hasConceptScore W2903855273C80444323 @default.
- W2903855273 hasLocation W29038552731 @default.
- W2903855273 hasOpenAccess W2903855273 @default.
- W2903855273 hasPrimaryLocation W29038552731 @default.
- W2903855273 hasRelatedWork W1548587320 @default.