Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903862608> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2903862608 abstract "Cell phone and advanced hardware, for example, fitness trackers, heart observing, and wearable gadgets are more regularly used nowadays to capture human exercises. Inertial Measurement Unit (IMU) sensor can read some parameter from human activity. Indicator and position formed from that sensor can be translated back by machine learning to classily human activities. Classification of human exercises known by the term Human Activity Recognition (HAR). Cell phone IMU sensor’s data is not linear and stationary. Feature from non-linear signal can be extracted better by using non-linear and non-stationary signal decomposition algorithm than by using conventional frequency analysis (Fourier Transform or Wavelet Transform). Ensemble Empirical Mode Decomposition (EEMD) method is better than Empirical Mode Decomposition (EMD) because EEMD utilize nonlinear signal decomposition based on either time-domain or frequency-domain. For further analysis, multi parameter added from EEMD signal processed with Hilbert-Huang Transform (HHT) to get instantaneous energy density. Instantaneous energy density is representing the absolute amplitude of signal over time and also marginal spectrum. Marginal spectrum shows the amplitude signal in frequency domain. Instantaneous energy density and amplitude of signal becomes selected properties for classification process. The novel approach of this research is joining EEMD process as a raw signal modifier and HHT as feature extraction process. Naive Bayes, Support Vector Machine (SYUI), and random forest used as machine learning classifier. The highest accuracy obtained from the Random Forest classifier and overall accuracy of three classifiers is 95% for all four performance indexes: recall, precision, F-measure, and accuracy." @default.
- W2903862608 created "2018-12-22" @default.
- W2903862608 creator A5011373897 @default.
- W2903862608 creator A5045187224 @default.
- W2903862608 creator A5055673153 @default.
- W2903862608 creator A5069284611 @default.
- W2903862608 date "2018-09-01" @default.
- W2903862608 modified "2023-09-24" @default.
- W2903862608 title "Performance Improvement of Human Activity Recognition based on Ensemble Empirical Mode Decomposition (EEMD)" @default.
- W2903862608 cites W2002927414 @default.
- W2903862608 cites W2007221293 @default.
- W2903862608 cites W2099805216 @default.
- W2903862608 cites W2127095067 @default.
- W2903862608 cites W2148217011 @default.
- W2903862608 cites W2165913693 @default.
- W2903862608 cites W2319522456 @default.
- W2903862608 cites W2342792048 @default.
- W2903862608 cites W2558720333 @default.
- W2903862608 cites W2759690896 @default.
- W2903862608 doi "https://doi.org/10.1109/icitacee.2018.8576916" @default.
- W2903862608 hasPublicationYear "2018" @default.
- W2903862608 type Work @default.
- W2903862608 sameAs 2903862608 @default.
- W2903862608 citedByCount "5" @default.
- W2903862608 countsByYear W29038626082019 @default.
- W2903862608 countsByYear W29038626082021 @default.
- W2903862608 countsByYear W29038626082023 @default.
- W2903862608 crossrefType "proceedings-article" @default.
- W2903862608 hasAuthorship W2903862608A5011373897 @default.
- W2903862608 hasAuthorship W2903862608A5045187224 @default.
- W2903862608 hasAuthorship W2903862608A5055673153 @default.
- W2903862608 hasAuthorship W2903862608A5069284611 @default.
- W2903862608 hasConcept C106131492 @default.
- W2903862608 hasConcept C107457646 @default.
- W2903862608 hasConcept C124681953 @default.
- W2903862608 hasConcept C153180895 @default.
- W2903862608 hasConcept C154945302 @default.
- W2903862608 hasConcept C18903297 @default.
- W2903862608 hasConcept C25570617 @default.
- W2903862608 hasConcept C28490314 @default.
- W2903862608 hasConcept C31972630 @default.
- W2903862608 hasConcept C41008148 @default.
- W2903862608 hasConcept C48677424 @default.
- W2903862608 hasConcept C86803240 @default.
- W2903862608 hasConceptScore W2903862608C106131492 @default.
- W2903862608 hasConceptScore W2903862608C107457646 @default.
- W2903862608 hasConceptScore W2903862608C124681953 @default.
- W2903862608 hasConceptScore W2903862608C153180895 @default.
- W2903862608 hasConceptScore W2903862608C154945302 @default.
- W2903862608 hasConceptScore W2903862608C18903297 @default.
- W2903862608 hasConceptScore W2903862608C25570617 @default.
- W2903862608 hasConceptScore W2903862608C28490314 @default.
- W2903862608 hasConceptScore W2903862608C31972630 @default.
- W2903862608 hasConceptScore W2903862608C41008148 @default.
- W2903862608 hasConceptScore W2903862608C48677424 @default.
- W2903862608 hasConceptScore W2903862608C86803240 @default.
- W2903862608 hasLocation W29038626081 @default.
- W2903862608 hasOpenAccess W2903862608 @default.
- W2903862608 hasPrimaryLocation W29038626081 @default.
- W2903862608 hasRelatedWork W1991773283 @default.
- W2903862608 hasRelatedWork W1998694462 @default.
- W2903862608 hasRelatedWork W2157390968 @default.
- W2903862608 hasRelatedWork W2183911703 @default.
- W2903862608 hasRelatedWork W2359972668 @default.
- W2903862608 hasRelatedWork W2384076496 @default.
- W2903862608 hasRelatedWork W2541315237 @default.
- W2903862608 hasRelatedWork W3176754182 @default.
- W2903862608 hasRelatedWork W95746132 @default.
- W2903862608 hasRelatedWork W2064408844 @default.
- W2903862608 isParatext "false" @default.
- W2903862608 isRetracted "false" @default.
- W2903862608 magId "2903862608" @default.
- W2903862608 workType "article" @default.