Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903878231> ?p ?o ?g. }
- W2903878231 abstract "The goal of this paper is to determine the parameters that are correlated with the biopsy diagnosis of acute renal rejection (AR) post-transplantation, using laboratory biomarkers and (3D+ -value) diffusion weighted MR (DW-MR) image- markers. 16 patients with non-rejection (NR) and 45 patients with AR renal allografts determined by their renal biopsy as a gold standard were included. All kidneys were evaluated using both laboratory biomarkers (e.g., creatinine clearance (CrCl) and serum creatinine (SCr)) and DW-MR image-markers. To extract the latter, DW-MR kidney images were first segmented using a geometric deformable model, then, DW-MR image-markers known as apparent diffusion coefficients (ADCs), were estimated for segmented kidneys at multiple b-values (i.e. strength and timing, of, the, field, gradients, (b50,b 100,,…,b 1000 s/mm2)). A statistical analysis investigating possible correlations between potential biomarkers of AR and the biopsy diagnosis was firstly performed. Two categories of parameters were mainly examined: (i) laboratory biomarkers (CrCl and SCr) and (ii) the average ADC (aADC) at individual b-values. Analysis of Variance(ANOVA) and the likelihood ratio ($chi^{2}$) tests found that both CrCl and SCr affected significantly the likelihood of AR, as did the aADC for the individual b-values of b 100, b 500, b 600, b 700, and b 900s/ mm2. Nevertheless, patient demographics (i.e. age and sex) and the aADC at the remaining b-values had no significant effect. The statistical analysis results encouraged us to investigate if this can lead to building a computer-aided diagnostic (CAD) system with the ability to classify AR from NR renal allografts. To achieve this goal, stacked auto-encoders (SAEs) based on deep learning approach were trained using the fusion of the statistically significant DW-MR image-markers and laboratory biomarkers for the classification purposes. Preliminary results obtained (92% accuracy, 92% sensitivity, and 94% specificity) hold a lot of promise of the presented technique to be reliably used as a noninvasive post-transplantation diagnostic tool." @default.
- W2903878231 created "2018-12-22" @default.
- W2903878231 creator A5001477187 @default.
- W2903878231 creator A5003428654 @default.
- W2903878231 creator A5004006894 @default.
- W2903878231 creator A5019125200 @default.
- W2903878231 creator A5019566817 @default.
- W2903878231 creator A5020634024 @default.
- W2903878231 creator A5074885987 @default.
- W2903878231 creator A5075057705 @default.
- W2903878231 creator A5083099298 @default.
- W2903878231 date "2018-10-01" @default.
- W2903878231 modified "2023-09-24" @default.
- W2903878231 title "A Novel CAD System for Detecting Acute Rejection of Renal Allografts Based on Integrating Imaging-markers and Laboratory Biomarkers" @default.
- W2903878231 cites W1554698203 @default.
- W2903878231 cites W1574330558 @default.
- W2903878231 cites W1780017716 @default.
- W2903878231 cites W1963669327 @default.
- W2903878231 cites W1986024191 @default.
- W2903878231 cites W1996990550 @default.
- W2903878231 cites W2019628175 @default.
- W2903878231 cites W2036794775 @default.
- W2903878231 cites W2047388139 @default.
- W2903878231 cites W2084518128 @default.
- W2903878231 cites W2100065311 @default.
- W2903878231 cites W2113899939 @default.
- W2903878231 cites W2117340355 @default.
- W2903878231 cites W2131188038 @default.
- W2903878231 cites W2133774049 @default.
- W2903878231 cites W2145094598 @default.
- W2903878231 cites W2146713759 @default.
- W2903878231 cites W2152157174 @default.
- W2903878231 cites W2155907407 @default.
- W2903878231 cites W2159558450 @default.
- W2903878231 cites W2170949560 @default.
- W2903878231 cites W2295354706 @default.
- W2903878231 cites W2314284553 @default.
- W2903878231 cites W2375762192 @default.
- W2903878231 cites W2502689631 @default.
- W2903878231 cites W2524401806 @default.
- W2903878231 cites W2554384030 @default.
- W2903878231 cites W2556818656 @default.
- W2903878231 cites W2564152343 @default.
- W2903878231 cites W2693588952 @default.
- W2903878231 cites W2755892552 @default.
- W2903878231 cites W2809891684 @default.
- W2903878231 cites W2884235242 @default.
- W2903878231 cites W2996196636 @default.
- W2903878231 cites W39092323 @default.
- W2903878231 doi "https://doi.org/10.1109/ist.2018.8577168" @default.
- W2903878231 hasPublicationYear "2018" @default.
- W2903878231 type Work @default.
- W2903878231 sameAs 2903878231 @default.
- W2903878231 citedByCount "4" @default.
- W2903878231 countsByYear W29038782312021 @default.
- W2903878231 countsByYear W29038782312023 @default.
- W2903878231 crossrefType "proceedings-article" @default.
- W2903878231 hasAuthorship W2903878231A5001477187 @default.
- W2903878231 hasAuthorship W2903878231A5003428654 @default.
- W2903878231 hasAuthorship W2903878231A5004006894 @default.
- W2903878231 hasAuthorship W2903878231A5019125200 @default.
- W2903878231 hasAuthorship W2903878231A5019566817 @default.
- W2903878231 hasAuthorship W2903878231A5020634024 @default.
- W2903878231 hasAuthorship W2903878231A5074885987 @default.
- W2903878231 hasAuthorship W2903878231A5075057705 @default.
- W2903878231 hasAuthorship W2903878231A5083099298 @default.
- W2903878231 hasConcept C126322002 @default.
- W2903878231 hasConcept C126894567 @default.
- W2903878231 hasConcept C142724271 @default.
- W2903878231 hasConcept C159641895 @default.
- W2903878231 hasConcept C2775934546 @default.
- W2903878231 hasConcept C2780091579 @default.
- W2903878231 hasConcept C2780303639 @default.
- W2903878231 hasConcept C2780306776 @default.
- W2903878231 hasConcept C2781087799 @default.
- W2903878231 hasConcept C2911091166 @default.
- W2903878231 hasConcept C40993552 @default.
- W2903878231 hasConcept C54847362 @default.
- W2903878231 hasConcept C71924100 @default.
- W2903878231 hasConcept C99476002 @default.
- W2903878231 hasConceptScore W2903878231C126322002 @default.
- W2903878231 hasConceptScore W2903878231C126894567 @default.
- W2903878231 hasConceptScore W2903878231C142724271 @default.
- W2903878231 hasConceptScore W2903878231C159641895 @default.
- W2903878231 hasConceptScore W2903878231C2775934546 @default.
- W2903878231 hasConceptScore W2903878231C2780091579 @default.
- W2903878231 hasConceptScore W2903878231C2780303639 @default.
- W2903878231 hasConceptScore W2903878231C2780306776 @default.
- W2903878231 hasConceptScore W2903878231C2781087799 @default.
- W2903878231 hasConceptScore W2903878231C2911091166 @default.
- W2903878231 hasConceptScore W2903878231C40993552 @default.
- W2903878231 hasConceptScore W2903878231C54847362 @default.
- W2903878231 hasConceptScore W2903878231C71924100 @default.
- W2903878231 hasConceptScore W2903878231C99476002 @default.
- W2903878231 hasLocation W29038782311 @default.
- W2903878231 hasOpenAccess W2903878231 @default.
- W2903878231 hasPrimaryLocation W29038782311 @default.
- W2903878231 hasRelatedWork W2008467746 @default.
- W2903878231 hasRelatedWork W2087024830 @default.
- W2903878231 hasRelatedWork W2253262801 @default.