Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903906558> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2903906558 abstract "Multivariate linear regressions are widely used statistical tools in many applications to model the associations between multiple related responses and a set of predictors. To infer such associations, it is often of interest to test the structure of the regression coefficients matrix, and the likelihood ratio test (LRT) is one of the most popular approaches in practice. Despite its popularity, it is known that the classical $chi^2$ approximations for LRTs often fail in high-dimensional settings, where the dimensions of responses and predictors $(m,p)$ are allowed to grow with the sample size $n$. Though various corrected LRTs and other test statistics have been proposed in the literature, the fundamental question of when the classic LRT starts to fail is less studied, an answer to which would provide insights for practitioners, especially when analyzing data with $m/n$ and $p/n$ small but not negligible. Moreover, the power performance of the LRT in high-dimensional data analysis remains underexplored. To address these issues, the first part of this work gives the asymptotic boundary where the classical LRT fails and develops the corrected limiting distribution of the LRT for a general asymptotic regime. The second part of this work further studies the test power of the LRT in the high-dimensional setting. The result not only advances the current understanding of asymptotic behavior of the LRT under alternative hypothesis, but also motivates the development of a power-enhanced LRT. The third part of this work considers the setting with $p>n$, where the LRT is not well-defined. We propose a two-step testing procedure by first performing dimension reduction and then applying the proposed LRT. Theoretical properties are developed to ensure the validity of the proposed method. Numerical studies are also presented to demonstrate its good performance." @default.
- W2903906558 created "2018-12-22" @default.
- W2903906558 creator A5018586197 @default.
- W2903906558 creator A5027989356 @default.
- W2903906558 creator A5037668726 @default.
- W2903906558 creator A5074500746 @default.
- W2903906558 date "2018-12-17" @default.
- W2903906558 modified "2023-10-05" @default.
- W2903906558 title "Likelihood Ratio Test in Multivariate Linear Regression: from Low to High Dimension" @default.
- W2903906558 cites W1580111774 @default.
- W2903906558 cites W1635119602 @default.
- W2903906558 cites W1826280061 @default.
- W2903906558 cites W1856239559 @default.
- W2903906558 cites W1885924565 @default.
- W2903906558 cites W1975555023 @default.
- W2903906558 cites W1977799921 @default.
- W2903906558 cites W1999558567 @default.
- W2903906558 cites W2018628402 @default.
- W2903906558 cites W2040408175 @default.
- W2903906558 cites W2063698478 @default.
- W2903906558 cites W2076327797 @default.
- W2903906558 cites W2076356585 @default.
- W2903906558 cites W2081297271 @default.
- W2903906558 cites W2082213488 @default.
- W2903906558 cites W2101593431 @default.
- W2903906558 cites W2114060717 @default.
- W2903906558 cites W2145234455 @default.
- W2903906558 cites W2154560360 @default.
- W2903906558 cites W2166163519 @default.
- W2903906558 cites W2231971934 @default.
- W2903906558 cites W2272001694 @default.
- W2903906558 cites W2512032716 @default.
- W2903906558 cites W2597335591 @default.
- W2903906558 cites W2736761365 @default.
- W2903906558 cites W2769255296 @default.
- W2903906558 cites W2798922842 @default.
- W2903906558 cites W2895374475 @default.
- W2903906558 cites W2963562991 @default.
- W2903906558 cites W3099053901 @default.
- W2903906558 cites W3101063317 @default.
- W2903906558 doi "https://doi.org/10.48550/arxiv.1812.06894" @default.
- W2903906558 hasPublicationYear "2018" @default.
- W2903906558 type Work @default.
- W2903906558 sameAs 2903906558 @default.
- W2903906558 citedByCount "0" @default.
- W2903906558 crossrefType "posted-content" @default.
- W2903906558 hasAuthorship W2903906558A5018586197 @default.
- W2903906558 hasAuthorship W2903906558A5027989356 @default.
- W2903906558 hasAuthorship W2903906558A5037668726 @default.
- W2903906558 hasAuthorship W2903906558A5074500746 @default.
- W2903906558 hasBestOaLocation W29039065581 @default.
- W2903906558 hasConcept C103463560 @default.
- W2903906558 hasConcept C105795698 @default.
- W2903906558 hasConcept C114614502 @default.
- W2903906558 hasConcept C134306372 @default.
- W2903906558 hasConcept C149782125 @default.
- W2903906558 hasConcept C152877465 @default.
- W2903906558 hasConcept C161584116 @default.
- W2903906558 hasConcept C185429906 @default.
- W2903906558 hasConcept C33676613 @default.
- W2903906558 hasConcept C33923547 @default.
- W2903906558 hasConcept C48921125 @default.
- W2903906558 hasConcept C62354387 @default.
- W2903906558 hasConcept C65778772 @default.
- W2903906558 hasConcept C87007009 @default.
- W2903906558 hasConcept C9483764 @default.
- W2903906558 hasConceptScore W2903906558C103463560 @default.
- W2903906558 hasConceptScore W2903906558C105795698 @default.
- W2903906558 hasConceptScore W2903906558C114614502 @default.
- W2903906558 hasConceptScore W2903906558C134306372 @default.
- W2903906558 hasConceptScore W2903906558C149782125 @default.
- W2903906558 hasConceptScore W2903906558C152877465 @default.
- W2903906558 hasConceptScore W2903906558C161584116 @default.
- W2903906558 hasConceptScore W2903906558C185429906 @default.
- W2903906558 hasConceptScore W2903906558C33676613 @default.
- W2903906558 hasConceptScore W2903906558C33923547 @default.
- W2903906558 hasConceptScore W2903906558C48921125 @default.
- W2903906558 hasConceptScore W2903906558C62354387 @default.
- W2903906558 hasConceptScore W2903906558C65778772 @default.
- W2903906558 hasConceptScore W2903906558C87007009 @default.
- W2903906558 hasConceptScore W2903906558C9483764 @default.
- W2903906558 hasLocation W29039065581 @default.
- W2903906558 hasLocation W29039065582 @default.
- W2903906558 hasOpenAccess W2903906558 @default.
- W2903906558 hasPrimaryLocation W29039065581 @default.
- W2903906558 hasRelatedWork W1982236837 @default.
- W2903906558 hasRelatedWork W1994041333 @default.
- W2903906558 hasRelatedWork W2079506176 @default.
- W2903906558 hasRelatedWork W2083457553 @default.
- W2903906558 hasRelatedWork W2094292909 @default.
- W2903906558 hasRelatedWork W2522876519 @default.
- W2903906558 hasRelatedWork W3015532143 @default.
- W2903906558 hasRelatedWork W3147334312 @default.
- W2903906558 hasRelatedWork W4249369821 @default.
- W2903906558 hasRelatedWork W4375948561 @default.
- W2903906558 isParatext "false" @default.
- W2903906558 isRetracted "false" @default.
- W2903906558 magId "2903906558" @default.
- W2903906558 workType "article" @default.