Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903963970> ?p ?o ?g. }
- W2903963970 endingPage "628" @default.
- W2903963970 startingPage "621" @default.
- W2903963970 abstract "Purpose To investigate the combination of mammography radiomics and quantitative three-compartment breast (3CB) image analysis of dual-energy mammography to limit unnecessary benign breast biopsies. Materials and Methods For this prospective study, dual-energy craniocaudal and mediolateral oblique mammograms were obtained immediately before biopsy in 109 women (mean age, 51 years; range, 31-85 years) with Breast Imaging Reporting and Data System category 4 or 5 breast masses (35 invasive cancers, 74 benign) from 2013 through 2017. The three quantitative compartments of water, lipid, and protein thickness at each pixel were calculated from the attenuation at high and low energy by using a within-image phantom. Masses were automatically segmented and features were extracted from the low-energy mammograms and the quantitative compartment images. Tenfold cross-validations using a linear discriminant classifier with predefined feature signatures helped differentiate between malignant and benign masses by means of (a) water-lipid-protein composition images alone, (b) mammography radiomics alone, and (c) a combined image analysis of both. Positive predictive value of biopsy performed (PPV3) at maximum sensitivity was the primary performance metric, and results were compared with those for conventional diagnostic digital mammography. Results The PPV3 for conventional diagnostic digital mammography in our data set was 32.1% (35 of 109; 95% confidence interval [CI]: 23.9%, 41.3%), with a sensitivity of 100%. In comparison, combined mammography radiomics plus quantitative 3CB image analysis had PPV3 of 49% (34 of 70; 95% CI: 36.5%, 58.9%; P < .001), with a sensitivity of 97% (34 of 35; 95% CI: 90.3%, 100%; P < .001) and 35.8% (39 of 109) fewer total biopsies (P < .001). Conclusion Quantitative three-compartment breast image analysis of breast masses combined with mammography radiomics has the potential to reduce unnecessary breast biopsies. © RSNA, 2018 Online supplemental material is available for this article." @default.
- W2903963970 created "2018-12-22" @default.
- W2903963970 creator A5013505067 @default.
- W2903963970 creator A5016580708 @default.
- W2903963970 creator A5024321936 @default.
- W2903963970 creator A5036726146 @default.
- W2903963970 creator A5046435712 @default.
- W2903963970 creator A5049042648 @default.
- W2903963970 creator A5052466847 @default.
- W2903963970 creator A5053009652 @default.
- W2903963970 creator A5054234981 @default.
- W2903963970 creator A5055952802 @default.
- W2903963970 creator A5069392685 @default.
- W2903963970 creator A5085257013 @default.
- W2903963970 date "2019-03-01" @default.
- W2903963970 modified "2023-10-17" @default.
- W2903963970 title "Combined Benefit of Quantitative Three-Compartment Breast Image Analysis and Mammography Radiomics in the Classification of Breast Masses in a Clinical Data Set" @default.
- W2903963970 cites W1971472203 @default.
- W2903963970 cites W1979442933 @default.
- W2903963970 cites W1992489994 @default.
- W2903963970 cites W1993278368 @default.
- W2903963970 cites W1999315230 @default.
- W2903963970 cites W2006870848 @default.
- W2903963970 cites W2035401398 @default.
- W2903963970 cites W2052991248 @default.
- W2903963970 cites W2061888621 @default.
- W2903963970 cites W2074020279 @default.
- W2903963970 cites W2077936189 @default.
- W2903963970 cites W2085260348 @default.
- W2903963970 cites W2092068359 @default.
- W2903963970 cites W2100372812 @default.
- W2903963970 cites W2119270896 @default.
- W2903963970 cites W2140722149 @default.
- W2903963970 cites W2148554069 @default.
- W2903963970 cites W2166267167 @default.
- W2903963970 cites W2168166809 @default.
- W2903963970 cites W2168662924 @default.
- W2903963970 cites W2174661749 @default.
- W2903963970 cites W2237281641 @default.
- W2903963970 cites W2346265746 @default.
- W2903963970 cites W2549173848 @default.
- W2903963970 cites W2583966135 @default.
- W2903963970 cites W2753963273 @default.
- W2903963970 cites W2765234785 @default.
- W2903963970 cites W2770717060 @default.
- W2903963970 cites W2785884561 @default.
- W2903963970 doi "https://doi.org/10.1148/radiol.2018180608" @default.
- W2903963970 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6394732" @default.
- W2903963970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30526359" @default.
- W2903963970 hasPublicationYear "2019" @default.
- W2903963970 type Work @default.
- W2903963970 sameAs 2903963970 @default.
- W2903963970 citedByCount "26" @default.
- W2903963970 countsByYear W29039639702019 @default.
- W2903963970 countsByYear W29039639702020 @default.
- W2903963970 countsByYear W29039639702021 @default.
- W2903963970 countsByYear W29039639702022 @default.
- W2903963970 countsByYear W29039639702023 @default.
- W2903963970 crossrefType "journal-article" @default.
- W2903963970 hasAuthorship W2903963970A5013505067 @default.
- W2903963970 hasAuthorship W2903963970A5016580708 @default.
- W2903963970 hasAuthorship W2903963970A5024321936 @default.
- W2903963970 hasAuthorship W2903963970A5036726146 @default.
- W2903963970 hasAuthorship W2903963970A5046435712 @default.
- W2903963970 hasAuthorship W2903963970A5049042648 @default.
- W2903963970 hasAuthorship W2903963970A5052466847 @default.
- W2903963970 hasAuthorship W2903963970A5053009652 @default.
- W2903963970 hasAuthorship W2903963970A5054234981 @default.
- W2903963970 hasAuthorship W2903963970A5055952802 @default.
- W2903963970 hasAuthorship W2903963970A5069392685 @default.
- W2903963970 hasAuthorship W2903963970A5085257013 @default.
- W2903963970 hasBestOaLocation W29039639701 @default.
- W2903963970 hasConcept C121608353 @default.
- W2903963970 hasConcept C126322002 @default.
- W2903963970 hasConcept C126838900 @default.
- W2903963970 hasConcept C2775934546 @default.
- W2903963970 hasConcept C2777432617 @default.
- W2903963970 hasConcept C2778559731 @default.
- W2903963970 hasConcept C2780472235 @default.
- W2903963970 hasConcept C2781281974 @default.
- W2903963970 hasConcept C2989005 @default.
- W2903963970 hasConcept C44249647 @default.
- W2903963970 hasConcept C530470458 @default.
- W2903963970 hasConcept C71924100 @default.
- W2903963970 hasConceptScore W2903963970C121608353 @default.
- W2903963970 hasConceptScore W2903963970C126322002 @default.
- W2903963970 hasConceptScore W2903963970C126838900 @default.
- W2903963970 hasConceptScore W2903963970C2775934546 @default.
- W2903963970 hasConceptScore W2903963970C2777432617 @default.
- W2903963970 hasConceptScore W2903963970C2778559731 @default.
- W2903963970 hasConceptScore W2903963970C2780472235 @default.
- W2903963970 hasConceptScore W2903963970C2781281974 @default.
- W2903963970 hasConceptScore W2903963970C2989005 @default.
- W2903963970 hasConceptScore W2903963970C44249647 @default.
- W2903963970 hasConceptScore W2903963970C530470458 @default.
- W2903963970 hasConceptScore W2903963970C71924100 @default.
- W2903963970 hasFunder F4320308018 @default.
- W2903963970 hasFunder F4320332161 @default.