Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903968246> ?p ?o ?g. }
- W2903968246 endingPage "258" @default.
- W2903968246 startingPage "247" @default.
- W2903968246 abstract "The loss of huge areas of peat swamp forest in Southeast Asia and the resulting negative environmental effects, both local and global, have led to an increasing interest in peat restoration in the region. Satellite remote sensing offers the potential to provide up-to-date information on peat swamp forest loss across large areas, and support spatial explicit conservation and restoration planning. Fusion of optical and radar remote sensing data may be particularly valuable in this context, as most peat swamp forests are in areas with high cloud cover, which limits the use of optical data. Radar data can ‘see through’ cloud, but experience so far has shown that it doesn't discriminate well between certain types of land cover. Various approaches to fusion exist, but there is little information on how they compare. To assess this untapped potential, we compare three different classification methods with Sentinel-1 and Sentinel-2 images to map the remnant distribution of peat swamp forest in the area surrounding Sungai Buluh Protection Forest, Sumatra, Indonesia. Results show that data fusion increases overall accuracy in one of the three methods, compared to the use of optical data only. When data fusion was used with the pixel-based classification using the original pixel values, overall accuracy increased by a small, but statistically significant amount. Data fusion was not beneficial in the case of object-based classification or pixel-based classification using principal components. This indicates optical data are still the main source of information for land cover mapping in the region. Based on our findings, we provide methodological recommendations to help those involved in peatland restoration capitalize on the potential of big data." @default.
- W2903968246 created "2018-12-22" @default.
- W2903968246 creator A5003890069 @default.
- W2903968246 creator A5011851793 @default.
- W2903968246 creator A5018382688 @default.
- W2903968246 creator A5025324057 @default.
- W2903968246 creator A5032718046 @default.
- W2903968246 creator A5033448601 @default.
- W2903968246 creator A5033544765 @default.
- W2903968246 creator A5035449270 @default.
- W2903968246 creator A5037282921 @default.
- W2903968246 creator A5039869039 @default.
- W2903968246 creator A5048707027 @default.
- W2903968246 creator A5053681190 @default.
- W2903968246 creator A5066159709 @default.
- W2903968246 creator A5069026931 @default.
- W2903968246 creator A5080474511 @default.
- W2903968246 creator A5087270954 @default.
- W2903968246 date "2018-12-10" @default.
- W2903968246 modified "2023-10-15" @default.
- W2903968246 title "A comparison of satellite remote sensing data fusion methods to map peat swamp forest loss in Sumatra, Indonesia" @default.
- W2903968246 cites W1970111226 @default.
- W2903968246 cites W1990653740 @default.
- W2903968246 cites W2001599060 @default.
- W2903968246 cites W2025745000 @default.
- W2903968246 cites W2035419249 @default.
- W2903968246 cites W2047825499 @default.
- W2903968246 cites W2068407874 @default.
- W2903968246 cites W2076193511 @default.
- W2903968246 cites W2076983043 @default.
- W2903968246 cites W2079299474 @default.
- W2903968246 cites W2082081125 @default.
- W2903968246 cites W2109917322 @default.
- W2903968246 cites W2123638813 @default.
- W2903968246 cites W2126508266 @default.
- W2903968246 cites W2141453575 @default.
- W2903968246 cites W2156960696 @default.
- W2903968246 cites W2164625958 @default.
- W2903968246 cites W2168481151 @default.
- W2903968246 cites W2175154033 @default.
- W2903968246 cites W2188083314 @default.
- W2903968246 cites W2247062920 @default.
- W2903968246 cites W2261059368 @default.
- W2903968246 cites W2288667372 @default.
- W2903968246 cites W2401246392 @default.
- W2903968246 cites W2402247296 @default.
- W2903968246 cites W2525592260 @default.
- W2903968246 cites W2559288498 @default.
- W2903968246 cites W2572501381 @default.
- W2903968246 cites W2625179181 @default.
- W2903968246 cites W2725897987 @default.
- W2903968246 cites W2765745572 @default.
- W2903968246 cites W2768894371 @default.
- W2903968246 cites W2769535831 @default.
- W2903968246 cites W2769675550 @default.
- W2903968246 cites W2806638043 @default.
- W2903968246 cites W2829356528 @default.
- W2903968246 cites W3104895181 @default.
- W2903968246 doi "https://doi.org/10.1002/rse2.102" @default.
- W2903968246 hasPublicationYear "2018" @default.
- W2903968246 type Work @default.
- W2903968246 sameAs 2903968246 @default.
- W2903968246 citedByCount "17" @default.
- W2903968246 countsByYear W29039682462020 @default.
- W2903968246 countsByYear W29039682462021 @default.
- W2903968246 countsByYear W29039682462022 @default.
- W2903968246 countsByYear W29039682462023 @default.
- W2903968246 crossrefType "journal-article" @default.
- W2903968246 hasAuthorship W2903968246A5003890069 @default.
- W2903968246 hasAuthorship W2903968246A5011851793 @default.
- W2903968246 hasAuthorship W2903968246A5018382688 @default.
- W2903968246 hasAuthorship W2903968246A5025324057 @default.
- W2903968246 hasAuthorship W2903968246A5032718046 @default.
- W2903968246 hasAuthorship W2903968246A5033448601 @default.
- W2903968246 hasAuthorship W2903968246A5033544765 @default.
- W2903968246 hasAuthorship W2903968246A5035449270 @default.
- W2903968246 hasAuthorship W2903968246A5037282921 @default.
- W2903968246 hasAuthorship W2903968246A5039869039 @default.
- W2903968246 hasAuthorship W2903968246A5048707027 @default.
- W2903968246 hasAuthorship W2903968246A5053681190 @default.
- W2903968246 hasAuthorship W2903968246A5066159709 @default.
- W2903968246 hasAuthorship W2903968246A5069026931 @default.
- W2903968246 hasAuthorship W2903968246A5080474511 @default.
- W2903968246 hasAuthorship W2903968246A5087270954 @default.
- W2903968246 hasBestOaLocation W29039682461 @default.
- W2903968246 hasConcept C154945302 @default.
- W2903968246 hasConcept C160633673 @default.
- W2903968246 hasConcept C166957645 @default.
- W2903968246 hasConcept C18903297 @default.
- W2903968246 hasConcept C205649164 @default.
- W2903968246 hasConcept C2778102629 @default.
- W2903968246 hasConcept C2779343474 @default.
- W2903968246 hasConcept C2780648208 @default.
- W2903968246 hasConcept C33954974 @default.
- W2903968246 hasConcept C39432304 @default.
- W2903968246 hasConcept C41008148 @default.
- W2903968246 hasConcept C4792198 @default.
- W2903968246 hasConcept C53657456 @default.