Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903976622> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2903976622 endingPage "34" @default.
- W2903976622 startingPage "23" @default.
- W2903976622 abstract "This paper presents a comprehensive comparison of well-known machine learning algorithms for estimating discrete slip events associated with individual wheels in planetary exploration rovers. This analysis is performed with various tuning configurations for each algorithm (55 setups). This research also shows the key role that environment plays in the performance of the learning algorithms: rover speed (0.05–0.25 [m/s]), type of terrain (gravel vs. sand), and tire type (off-road tires vs. smooth tires). These contributions are validated by using a broad data set collected using a planetary rover equipped with proprioceptive sensing. This work not only identifies the best algorithm to be deployed for discrete slip estimation, but it also helps with the selection and the mounting position of the sensing systems to be employed in future robotic planetary missions." @default.
- W2903976622 created "2018-12-22" @default.
- W2903976622 creator A5030375154 @default.
- W2903976622 creator A5052635246 @default.
- W2903976622 creator A5071848387 @default.
- W2903976622 date "2019-04-01" @default.
- W2903976622 modified "2023-10-16" @default.
- W2903976622 title "Characterization of machine learning algorithms for slippage estimation in planetary exploration rovers" @default.
- W2903976622 cites W1997568160 @default.
- W2903976622 cites W2051392861 @default.
- W2903976622 cites W2069635875 @default.
- W2903976622 cites W2078550116 @default.
- W2903976622 cites W2080788014 @default.
- W2903976622 cites W2118561568 @default.
- W2903976622 cites W2161322375 @default.
- W2903976622 cites W2170505850 @default.
- W2903976622 cites W2739138241 @default.
- W2903976622 cites W2759943497 @default.
- W2903976622 cites W2765768827 @default.
- W2903976622 cites W4236706032 @default.
- W2903976622 doi "https://doi.org/10.1016/j.jterra.2018.12.001" @default.
- W2903976622 hasPublicationYear "2019" @default.
- W2903976622 type Work @default.
- W2903976622 sameAs 2903976622 @default.
- W2903976622 citedByCount "24" @default.
- W2903976622 countsByYear W29039766222020 @default.
- W2903976622 countsByYear W29039766222021 @default.
- W2903976622 countsByYear W29039766222022 @default.
- W2903976622 countsByYear W29039766222023 @default.
- W2903976622 crossrefType "journal-article" @default.
- W2903976622 hasAuthorship W2903976622A5030375154 @default.
- W2903976622 hasAuthorship W2903976622A5052635246 @default.
- W2903976622 hasAuthorship W2903976622A5071848387 @default.
- W2903976622 hasConcept C11413529 @default.
- W2903976622 hasConcept C119857082 @default.
- W2903976622 hasConcept C121332964 @default.
- W2903976622 hasConcept C127413603 @default.
- W2903976622 hasConcept C146978453 @default.
- W2903976622 hasConcept C154945302 @default.
- W2903976622 hasConcept C161840515 @default.
- W2903976622 hasConcept C195268267 @default.
- W2903976622 hasConcept C205649164 @default.
- W2903976622 hasConcept C2776096238 @default.
- W2903976622 hasConcept C2989411428 @default.
- W2903976622 hasConcept C41008148 @default.
- W2903976622 hasConcept C58640448 @default.
- W2903976622 hasConcept C66938386 @default.
- W2903976622 hasConcept C83260615 @default.
- W2903976622 hasConcept C87355193 @default.
- W2903976622 hasConceptScore W2903976622C11413529 @default.
- W2903976622 hasConceptScore W2903976622C119857082 @default.
- W2903976622 hasConceptScore W2903976622C121332964 @default.
- W2903976622 hasConceptScore W2903976622C127413603 @default.
- W2903976622 hasConceptScore W2903976622C146978453 @default.
- W2903976622 hasConceptScore W2903976622C154945302 @default.
- W2903976622 hasConceptScore W2903976622C161840515 @default.
- W2903976622 hasConceptScore W2903976622C195268267 @default.
- W2903976622 hasConceptScore W2903976622C205649164 @default.
- W2903976622 hasConceptScore W2903976622C2776096238 @default.
- W2903976622 hasConceptScore W2903976622C2989411428 @default.
- W2903976622 hasConceptScore W2903976622C41008148 @default.
- W2903976622 hasConceptScore W2903976622C58640448 @default.
- W2903976622 hasConceptScore W2903976622C66938386 @default.
- W2903976622 hasConceptScore W2903976622C83260615 @default.
- W2903976622 hasConceptScore W2903976622C87355193 @default.
- W2903976622 hasFunder F4320306101 @default.
- W2903976622 hasLocation W29039766221 @default.
- W2903976622 hasOpenAccess W2903976622 @default.
- W2903976622 hasPrimaryLocation W29039766221 @default.
- W2903976622 hasRelatedWork W1984674733 @default.
- W2903976622 hasRelatedWork W2019509716 @default.
- W2903976622 hasRelatedWork W2136213179 @default.
- W2903976622 hasRelatedWork W2153137868 @default.
- W2903976622 hasRelatedWork W2545128643 @default.
- W2903976622 hasRelatedWork W296739210 @default.
- W2903976622 hasRelatedWork W3131680547 @default.
- W2903976622 hasRelatedWork W3132129980 @default.
- W2903976622 hasRelatedWork W4206054388 @default.
- W2903976622 hasRelatedWork W4287688643 @default.
- W2903976622 hasVolume "82" @default.
- W2903976622 isParatext "false" @default.
- W2903976622 isRetracted "false" @default.
- W2903976622 magId "2903976622" @default.
- W2903976622 workType "article" @default.