Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903982178> ?p ?o ?g. }
- W2903982178 endingPage "337" @default.
- W2903982178 startingPage "329" @default.
- W2903982178 abstract "Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF).Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification.A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p < 0.05).ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios." @default.
- W2903982178 created "2018-12-22" @default.
- W2903982178 creator A5048875033 @default.
- W2903982178 creator A5053371139 @default.
- W2903982178 creator A5060570681 @default.
- W2903982178 creator A5074023456 @default.
- W2903982178 creator A5075518033 @default.
- W2903982178 date "2018-12-31" @default.
- W2903982178 modified "2023-10-02" @default.
- W2903982178 title "Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning" @default.
- W2903982178 cites W1417620923 @default.
- W2903982178 cites W1651586605 @default.
- W2903982178 cites W1964899236 @default.
- W2903982178 cites W1981976602 @default.
- W2903982178 cites W2003400853 @default.
- W2903982178 cites W2025596434 @default.
- W2903982178 cites W2032522561 @default.
- W2903982178 cites W2040884411 @default.
- W2903982178 cites W2043606064 @default.
- W2903982178 cites W2048301249 @default.
- W2903982178 cites W2052069354 @default.
- W2903982178 cites W2056052206 @default.
- W2903982178 cites W2076652359 @default.
- W2903982178 cites W2081197307 @default.
- W2903982178 cites W2090300870 @default.
- W2903982178 cites W2107045626 @default.
- W2903982178 cites W2114053544 @default.
- W2903982178 cites W2270604549 @default.
- W2903982178 cites W2324842533 @default.
- W2903982178 cites W2510423507 @default.
- W2903982178 cites W2529488695 @default.
- W2903982178 cites W2582043155 @default.
- W2903982178 cites W2589016064 @default.
- W2903982178 cites W4296886862 @default.
- W2903982178 doi "https://doi.org/10.14245/ns.1836248.124" @default.
- W2903982178 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6347343" @default.
- W2903982178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30554505" @default.
- W2903982178 hasPublicationYear "2018" @default.
- W2903982178 type Work @default.
- W2903982178 sameAs 2903982178 @default.
- W2903982178 citedByCount "59" @default.
- W2903982178 countsByYear W29039821782018 @default.
- W2903982178 countsByYear W29039821782019 @default.
- W2903982178 countsByYear W29039821782020 @default.
- W2903982178 countsByYear W29039821782021 @default.
- W2903982178 countsByYear W29039821782022 @default.
- W2903982178 countsByYear W29039821782023 @default.
- W2903982178 crossrefType "journal-article" @default.
- W2903982178 hasAuthorship W2903982178A5048875033 @default.
- W2903982178 hasAuthorship W2903982178A5053371139 @default.
- W2903982178 hasAuthorship W2903982178A5060570681 @default.
- W2903982178 hasAuthorship W2903982178A5074023456 @default.
- W2903982178 hasAuthorship W2903982178A5075518033 @default.
- W2903982178 hasBestOaLocation W29039821781 @default.
- W2903982178 hasConcept C119857082 @default.
- W2903982178 hasConcept C12267149 @default.
- W2903982178 hasConcept C141071460 @default.
- W2903982178 hasConcept C151956035 @default.
- W2903982178 hasConcept C154945302 @default.
- W2903982178 hasConcept C169258074 @default.
- W2903982178 hasConcept C2781430139 @default.
- W2903982178 hasConcept C2985379065 @default.
- W2903982178 hasConcept C41008148 @default.
- W2903982178 hasConcept C50644808 @default.
- W2903982178 hasConcept C71924100 @default.
- W2903982178 hasConcept C81182388 @default.
- W2903982178 hasConcept C84525736 @default.
- W2903982178 hasConceptScore W2903982178C119857082 @default.
- W2903982178 hasConceptScore W2903982178C12267149 @default.
- W2903982178 hasConceptScore W2903982178C141071460 @default.
- W2903982178 hasConceptScore W2903982178C151956035 @default.
- W2903982178 hasConceptScore W2903982178C154945302 @default.
- W2903982178 hasConceptScore W2903982178C169258074 @default.
- W2903982178 hasConceptScore W2903982178C2781430139 @default.
- W2903982178 hasConceptScore W2903982178C2985379065 @default.
- W2903982178 hasConceptScore W2903982178C41008148 @default.
- W2903982178 hasConceptScore W2903982178C50644808 @default.
- W2903982178 hasConceptScore W2903982178C71924100 @default.
- W2903982178 hasConceptScore W2903982178C81182388 @default.
- W2903982178 hasConceptScore W2903982178C84525736 @default.
- W2903982178 hasIssue "4" @default.
- W2903982178 hasLocation W29039821781 @default.
- W2903982178 hasLocation W29039821782 @default.
- W2903982178 hasLocation W29039821783 @default.
- W2903982178 hasLocation W29039821784 @default.
- W2903982178 hasLocation W29039821785 @default.
- W2903982178 hasOpenAccess W2903982178 @default.
- W2903982178 hasPrimaryLocation W29039821781 @default.
- W2903982178 hasRelatedWork W3195168932 @default.
- W2903982178 hasRelatedWork W4212963941 @default.
- W2903982178 hasRelatedWork W4239706975 @default.
- W2903982178 hasRelatedWork W4283313480 @default.
- W2903982178 hasRelatedWork W4321636153 @default.
- W2903982178 hasRelatedWork W4366151905 @default.
- W2903982178 hasRelatedWork W4367335893 @default.
- W2903982178 hasRelatedWork W4377964522 @default.
- W2903982178 hasRelatedWork W4383535405 @default.
- W2903982178 hasRelatedWork W4384520063 @default.