Matches in SemOpenAlex for { <https://semopenalex.org/work/W2903989726> ?p ?o ?g. }
- W2903989726 endingPage "1980" @default.
- W2903989726 startingPage "1973" @default.
- W2903989726 abstract "Wine, an alcoholic beverage made from fermented grapes, has become an increasingly popular drink. However, wine regions may directly affect the quality and taste of the wine, and misjudgment of the wine regions leads to confusion for dealers and consumers in choosing wine types. In recent decades, different methods in machine learning have been presented and investigated the pattern classification. In this paper, based on the existing results, a modified multi-output Chebyshev-polynomial feed-forward neural network (MOCPFFNN) is presented, analyzed, and applied to the pattern classification of wines regions. According to the orthogonal polynomial theory, the activation functions of the MOCPFFNN are improved to some Chebyshev polynomials. In addition, to have a lower computational complexity, the presented neural network model is automatically determined by the eight-fold cross validation (8FCV) algorithm and the weight direct determination (WDD) algorithm. Finally, comparisons are made among the presented model and other classical methods, e.g., feed-forward back propagation (FFBP), layer recurrent neural network (LRNN), and nonlinear auto regressive with exogenous inputs (NARX), K-nearest neighbors (KNN), random forest, which confirm that the modified MOCPFFNN has the best approximation and generalization performance in the pattern classification of wine regions, with the accuracy rates of the training set and test set reaching 99.17% and 94.83%, respectively. Moreover, the variance of the accuracy of the presented MOCPFFNN method in the experiments is 0, which illustrates its high robustness in pattern classification." @default.
- W2903989726 created "2018-12-22" @default.
- W2903989726 creator A5004716871 @default.
- W2903989726 creator A5007715345 @default.
- W2903989726 creator A5025165146 @default.
- W2903989726 creator A5050729402 @default.
- W2903989726 creator A5064678101 @default.
- W2903989726 creator A5088582446 @default.
- W2903989726 date "2019-01-01" @default.
- W2903989726 modified "2023-10-14" @default.
- W2903989726 title "On Modified Multi-Output Chebyshev-Polynomial Feed-Forward Neural Network for Pattern Classification of Wine Regions" @default.
- W2903989726 cites W1527375991 @default.
- W2903989726 cites W1956381351 @default.
- W2903989726 cites W1965342979 @default.
- W2903989726 cites W1981251392 @default.
- W2903989726 cites W1998669885 @default.
- W2903989726 cites W2008095228 @default.
- W2903989726 cites W2008822902 @default.
- W2903989726 cites W2024975768 @default.
- W2903989726 cites W2050927557 @default.
- W2903989726 cites W2053966794 @default.
- W2903989726 cites W2082381659 @default.
- W2903989726 cites W2083505310 @default.
- W2903989726 cites W2117257518 @default.
- W2903989726 cites W2154587590 @default.
- W2903989726 cites W2159901710 @default.
- W2903989726 cites W2168126963 @default.
- W2903989726 cites W2339876161 @default.
- W2903989726 cites W2496866879 @default.
- W2903989726 cites W2515983563 @default.
- W2903989726 cites W2518913404 @default.
- W2903989726 cites W2559957666 @default.
- W2903989726 cites W2734462742 @default.
- W2903989726 cites W2754280543 @default.
- W2903989726 cites W2775379762 @default.
- W2903989726 cites W2781841050 @default.
- W2903989726 cites W2897981614 @default.
- W2903989726 cites W2900987377 @default.
- W2903989726 cites W3121732708 @default.
- W2903989726 cites W3125779498 @default.
- W2903989726 cites W4235600527 @default.
- W2903989726 doi "https://doi.org/10.1109/access.2018.2885527" @default.
- W2903989726 hasPublicationYear "2019" @default.
- W2903989726 type Work @default.
- W2903989726 sameAs 2903989726 @default.
- W2903989726 citedByCount "20" @default.
- W2903989726 countsByYear W29039897262019 @default.
- W2903989726 countsByYear W29039897262020 @default.
- W2903989726 countsByYear W29039897262021 @default.
- W2903989726 countsByYear W29039897262022 @default.
- W2903989726 countsByYear W29039897262023 @default.
- W2903989726 crossrefType "journal-article" @default.
- W2903989726 hasAuthorship W2903989726A5004716871 @default.
- W2903989726 hasAuthorship W2903989726A5007715345 @default.
- W2903989726 hasAuthorship W2903989726A5025165146 @default.
- W2903989726 hasAuthorship W2903989726A5050729402 @default.
- W2903989726 hasAuthorship W2903989726A5064678101 @default.
- W2903989726 hasAuthorship W2903989726A5088582446 @default.
- W2903989726 hasBestOaLocation W29039897261 @default.
- W2903989726 hasConcept C11413529 @default.
- W2903989726 hasConcept C120665830 @default.
- W2903989726 hasConcept C121332964 @default.
- W2903989726 hasConcept C129785596 @default.
- W2903989726 hasConcept C134306372 @default.
- W2903989726 hasConcept C153180895 @default.
- W2903989726 hasConcept C154945302 @default.
- W2903989726 hasConcept C171326582 @default.
- W2903989726 hasConcept C21424316 @default.
- W2903989726 hasConcept C31972630 @default.
- W2903989726 hasConcept C33923547 @default.
- W2903989726 hasConcept C41008148 @default.
- W2903989726 hasConcept C47702885 @default.
- W2903989726 hasConcept C50644808 @default.
- W2903989726 hasConcept C55952523 @default.
- W2903989726 hasConcept C90119067 @default.
- W2903989726 hasConceptScore W2903989726C11413529 @default.
- W2903989726 hasConceptScore W2903989726C120665830 @default.
- W2903989726 hasConceptScore W2903989726C121332964 @default.
- W2903989726 hasConceptScore W2903989726C129785596 @default.
- W2903989726 hasConceptScore W2903989726C134306372 @default.
- W2903989726 hasConceptScore W2903989726C153180895 @default.
- W2903989726 hasConceptScore W2903989726C154945302 @default.
- W2903989726 hasConceptScore W2903989726C171326582 @default.
- W2903989726 hasConceptScore W2903989726C21424316 @default.
- W2903989726 hasConceptScore W2903989726C31972630 @default.
- W2903989726 hasConceptScore W2903989726C33923547 @default.
- W2903989726 hasConceptScore W2903989726C41008148 @default.
- W2903989726 hasConceptScore W2903989726C47702885 @default.
- W2903989726 hasConceptScore W2903989726C50644808 @default.
- W2903989726 hasConceptScore W2903989726C55952523 @default.
- W2903989726 hasConceptScore W2903989726C90119067 @default.
- W2903989726 hasFunder F4320313889 @default.
- W2903989726 hasFunder F4320321001 @default.
- W2903989726 hasFunder F4320321543 @default.
- W2903989726 hasFunder F4320322843 @default.
- W2903989726 hasFunder F4320322880 @default.
- W2903989726 hasFunder F4320335787 @default.
- W2903989726 hasLocation W29039897261 @default.