Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904005001> ?p ?o ?g. }
- W2904005001 endingPage "V350" @default.
- W2904005001 startingPage "V333" @default.
- W2904005001 abstract "Compared with traditional seismic noise attenuation algorithms that depend on signal models and their corresponding prior assumptions, removing noise with a deep neural network is trained based on a large training set in which the inputs are the raw data sets and the corresponding outputs are the desired clean data. After the completion of training, the deep-learning (DL) method achieves adaptive denoising with no requirements of (1) accurate modelings of the signal and noise or (2) optimal parameters tuning. We call this intelligent denoising. We have used a convolutional neural network (CNN) as the basic tool for DL. In random and linear noise attenuation, the training set is generated with artificially added noise. In the multiple attenuation step, the training set is generated with the acoustic wave equation. The stochastic gradient descent is used to solve the optimal parameters for the CNN. The runtime of DL on a graphics processing unit for denoising has the same order as the [Formula: see text]-[Formula: see text] deconvolution method. Synthetic and field results indicate the potential applications of DL in automatic attenuation of random noise (with unknown variance), linear noise, and multiples." @default.
- W2904005001 created "2018-12-22" @default.
- W2904005001 creator A5068775552 @default.
- W2904005001 creator A5075889181 @default.
- W2904005001 creator A5078652354 @default.
- W2904005001 date "2019-11-01" @default.
- W2904005001 modified "2023-10-16" @default.
- W2904005001 title "Deep learning for denoising" @default.
- W2904005001 cites W1507654375 @default.
- W2904005001 cites W1806891645 @default.
- W2904005001 cites W1829774568 @default.
- W2904005001 cites W1915485278 @default.
- W2904005001 cites W1975139914 @default.
- W2904005001 cites W1981607562 @default.
- W2904005001 cites W2006408150 @default.
- W2904005001 cites W2010623371 @default.
- W2904005001 cites W2013913026 @default.
- W2904005001 cites W2020205028 @default.
- W2904005001 cites W2023005931 @default.
- W2904005001 cites W2024829194 @default.
- W2904005001 cites W2026728392 @default.
- W2904005001 cites W2053376610 @default.
- W2904005001 cites W2057485255 @default.
- W2904005001 cites W2072549406 @default.
- W2904005001 cites W2076393573 @default.
- W2904005001 cites W2082202949 @default.
- W2904005001 cites W2083780116 @default.
- W2904005001 cites W2108598243 @default.
- W2904005001 cites W2111248943 @default.
- W2904005001 cites W2112796928 @default.
- W2904005001 cites W2117481741 @default.
- W2904005001 cites W2122109200 @default.
- W2904005001 cites W2132454757 @default.
- W2904005001 cites W2136922672 @default.
- W2904005001 cites W2145167443 @default.
- W2904005001 cites W2154818083 @default.
- W2904005001 cites W2160814043 @default.
- W2904005001 cites W2161381512 @default.
- W2904005001 cites W2162171712 @default.
- W2904005001 cites W2169165793 @default.
- W2904005001 cites W2217896605 @default.
- W2904005001 cites W2333099437 @default.
- W2904005001 cites W2417420177 @default.
- W2904005001 cites W2418486711 @default.
- W2904005001 cites W2508457857 @default.
- W2904005001 cites W2533558946 @default.
- W2904005001 cites W2592517375 @default.
- W2904005001 cites W2601307685 @default.
- W2904005001 cites W2605232094 @default.
- W2904005001 cites W2726304302 @default.
- W2904005001 cites W2889638205 @default.
- W2904005001 cites W2891111066 @default.
- W2904005001 cites W2891932361 @default.
- W2904005001 cites W2892287369 @default.
- W2904005001 cites W2911424749 @default.
- W2904005001 cites W2923484039 @default.
- W2904005001 cites W4229798980 @default.
- W2904005001 cites W4239510810 @default.
- W2904005001 cites W54257720 @default.
- W2904005001 doi "https://doi.org/10.1190/geo2018-0668.1" @default.
- W2904005001 hasPublicationYear "2019" @default.
- W2904005001 type Work @default.
- W2904005001 sameAs 2904005001 @default.
- W2904005001 citedByCount "196" @default.
- W2904005001 countsByYear W29040050012019 @default.
- W2904005001 countsByYear W29040050012020 @default.
- W2904005001 countsByYear W29040050012021 @default.
- W2904005001 countsByYear W29040050012022 @default.
- W2904005001 countsByYear W29040050012023 @default.
- W2904005001 crossrefType "journal-article" @default.
- W2904005001 hasAuthorship W2904005001A5068775552 @default.
- W2904005001 hasAuthorship W2904005001A5075889181 @default.
- W2904005001 hasAuthorship W2904005001A5078652354 @default.
- W2904005001 hasConcept C11413529 @default.
- W2904005001 hasConcept C115961682 @default.
- W2904005001 hasConcept C120665830 @default.
- W2904005001 hasConcept C121332964 @default.
- W2904005001 hasConcept C153180895 @default.
- W2904005001 hasConcept C154945302 @default.
- W2904005001 hasConcept C163294075 @default.
- W2904005001 hasConcept C174576160 @default.
- W2904005001 hasConcept C184652730 @default.
- W2904005001 hasConcept C206688291 @default.
- W2904005001 hasConcept C41008148 @default.
- W2904005001 hasConcept C50644808 @default.
- W2904005001 hasConcept C81363708 @default.
- W2904005001 hasConcept C99498987 @default.
- W2904005001 hasConceptScore W2904005001C11413529 @default.
- W2904005001 hasConceptScore W2904005001C115961682 @default.
- W2904005001 hasConceptScore W2904005001C120665830 @default.
- W2904005001 hasConceptScore W2904005001C121332964 @default.
- W2904005001 hasConceptScore W2904005001C153180895 @default.
- W2904005001 hasConceptScore W2904005001C154945302 @default.
- W2904005001 hasConceptScore W2904005001C163294075 @default.
- W2904005001 hasConceptScore W2904005001C174576160 @default.
- W2904005001 hasConceptScore W2904005001C184652730 @default.
- W2904005001 hasConceptScore W2904005001C206688291 @default.
- W2904005001 hasConceptScore W2904005001C41008148 @default.