Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904005384> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2904005384 abstract "Although gastric cancer is a malignancy with high morbidity and mortality in China, the survival rate of patients with early gastric cancer (EGC) is high after surgical resection. To strengthen diagnosing and screening is the key to improve the survival and life quality of patients with EGC. This study applied data mining methods to improve screening for the risk of EGC on the basis of noninvasive factors, and displayed important influence factors for the risk of EGC.The dataset was derived from a project of the First Hospital Affiliated Guangdong Pharmaceutical University. A series of questionnaire surveys, serological examinations and endoscopy plus pathology biopsy were conducted in 618 patients with gastric diseases. Their risk of EGC was categorized into low and high risk of EGC by the results of endoscopy plus pathology biopsy. The synthetic minority oversampling technique (SMOTE) was used to solve imbalance categories of the risk of EGC. Four classification models of the risk of EGC was established, including logistic regression (LR) and three data mining algorithms.The three data mining models had higher accuracy than the LR model. Gain curves of the three data mining models were convexes more closer to ideal curves by contrast with that of the LR model. AUC of the three data mining models were larger than that of the LR model as well. The three data mining models predicted the risk of EGC more effectively in comparison with the LR model. Moreover, this study found 16 important influence factors for the risk of EGC, such as occupations, helicobacter pylori infection, drinking hot water and so on.The three data mining models have optimal predictive behaviors over the LR model, therefore can effectively evaluate the risk of EGC and assist clinicians in improving the diagnosis and screening of EGC. Sixteen important influence factors for the risk of EGC were illustrated, which may helpfully assess gastric carcinogenesis, and remind to early prevention and early detection of gastric cancer. This study may also be conducive to clinical researchers in selecting and conducting the optimal predictive models." @default.
- W2904005384 created "2018-12-22" @default.
- W2904005384 creator A5002423609 @default.
- W2904005384 creator A5018962776 @default.
- W2904005384 creator A5043295520 @default.
- W2904005384 creator A5051812909 @default.
- W2904005384 creator A5064221142 @default.
- W2904005384 creator A5088029552 @default.
- W2904005384 date "2018-12-01" @default.
- W2904005384 modified "2023-10-16" @default.
- W2904005384 title "Application of data mining methods to improve screening for the risk of early gastric cancer" @default.
- W2904005384 cites W1802207720 @default.
- W2904005384 cites W1935001250 @default.
- W2904005384 cites W1963771239 @default.
- W2904005384 cites W1965906457 @default.
- W2904005384 cites W1983024255 @default.
- W2904005384 cites W1989604070 @default.
- W2904005384 cites W1999787261 @default.
- W2904005384 cites W2000406627 @default.
- W2904005384 cites W2023525292 @default.
- W2904005384 cites W2027502685 @default.
- W2904005384 cites W2057589484 @default.
- W2904005384 cites W2058008546 @default.
- W2904005384 cites W2062140163 @default.
- W2904005384 cites W2081697244 @default.
- W2904005384 cites W2098671713 @default.
- W2904005384 cites W2109509105 @default.
- W2904005384 cites W2118004907 @default.
- W2904005384 cites W2142488125 @default.
- W2904005384 cites W2148143831 @default.
- W2904005384 cites W2164330572 @default.
- W2904005384 cites W2167217798 @default.
- W2904005384 cites W2188194272 @default.
- W2904005384 cites W2192631392 @default.
- W2904005384 cites W2259187279 @default.
- W2904005384 cites W2323062188 @default.
- W2904005384 cites W2561991028 @default.
- W2904005384 cites W2571976136 @default.
- W2904005384 cites W2621696071 @default.
- W2904005384 doi "https://doi.org/10.1186/s12911-018-0689-4" @default.
- W2904005384 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6284275" @default.
- W2904005384 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30526601" @default.
- W2904005384 hasPublicationYear "2018" @default.
- W2904005384 type Work @default.
- W2904005384 sameAs 2904005384 @default.
- W2904005384 citedByCount "23" @default.
- W2904005384 countsByYear W29040053842019 @default.
- W2904005384 countsByYear W29040053842020 @default.
- W2904005384 countsByYear W29040053842021 @default.
- W2904005384 countsByYear W29040053842022 @default.
- W2904005384 countsByYear W29040053842023 @default.
- W2904005384 crossrefType "journal-article" @default.
- W2904005384 hasAuthorship W2904005384A5002423609 @default.
- W2904005384 hasAuthorship W2904005384A5018962776 @default.
- W2904005384 hasAuthorship W2904005384A5043295520 @default.
- W2904005384 hasAuthorship W2904005384A5051812909 @default.
- W2904005384 hasAuthorship W2904005384A5064221142 @default.
- W2904005384 hasAuthorship W2904005384A5088029552 @default.
- W2904005384 hasBestOaLocation W29040053841 @default.
- W2904005384 hasConcept C121608353 @default.
- W2904005384 hasConcept C124101348 @default.
- W2904005384 hasConcept C126322002 @default.
- W2904005384 hasConcept C143998085 @default.
- W2904005384 hasConcept C151956035 @default.
- W2904005384 hasConcept C41008148 @default.
- W2904005384 hasConcept C50382708 @default.
- W2904005384 hasConcept C71924100 @default.
- W2904005384 hasConceptScore W2904005384C121608353 @default.
- W2904005384 hasConceptScore W2904005384C124101348 @default.
- W2904005384 hasConceptScore W2904005384C126322002 @default.
- W2904005384 hasConceptScore W2904005384C143998085 @default.
- W2904005384 hasConceptScore W2904005384C151956035 @default.
- W2904005384 hasConceptScore W2904005384C41008148 @default.
- W2904005384 hasConceptScore W2904005384C50382708 @default.
- W2904005384 hasConceptScore W2904005384C71924100 @default.
- W2904005384 hasIssue "S5" @default.
- W2904005384 hasLocation W29040053841 @default.
- W2904005384 hasLocation W29040053842 @default.
- W2904005384 hasLocation W29040053843 @default.
- W2904005384 hasLocation W29040053844 @default.
- W2904005384 hasOpenAccess W2904005384 @default.
- W2904005384 hasPrimaryLocation W29040053841 @default.
- W2904005384 hasRelatedWork W2033440281 @default.
- W2904005384 hasRelatedWork W2091020218 @default.
- W2904005384 hasRelatedWork W2116656460 @default.
- W2904005384 hasRelatedWork W2365364931 @default.
- W2904005384 hasRelatedWork W2389709268 @default.
- W2904005384 hasRelatedWork W2418638721 @default.
- W2904005384 hasRelatedWork W2572837865 @default.
- W2904005384 hasRelatedWork W2897496508 @default.
- W2904005384 hasRelatedWork W3195157242 @default.
- W2904005384 hasRelatedWork W3206949260 @default.
- W2904005384 hasVolume "18" @default.
- W2904005384 isParatext "false" @default.
- W2904005384 isRetracted "false" @default.
- W2904005384 magId "2904005384" @default.
- W2904005384 workType "article" @default.