Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904012980> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2904012980 abstract "Agriculture has been the sector of paramount importance as it feeds the country population along with contributing to the GDP. Crop yield varies with a combination of factors including soil properties, climate, elevation and irrigation technique. Technological developments have fallen short in estimating the yield based on this joint dependence of the said factors. Hence, in this project a data-driven model that learns by historic soil as well as rainfall data to analyse and predict crop yield over seasons in several districts, has been developed. For this study, a particular crop, Rice is considered. The designed hybrid neural network model identifies optimal combinations of soil parameters and blends it with the rainfall pattern in a selected region to evolve the expectable crop yield. The backbone for the predictive analysis model with respect to the rainfall is based on the Time-Series approach in Supervised Learning. The technology used for the final prediction of the crop yield is again a branch of Machine Learning, known as Recurrent Neural Networks. With two inter-communicating data-driven models working at the backend, the final predictions obtained were successful in depicting the interdependence between soil parameters for yield and weather attributes." @default.
- W2904012980 created "2018-12-22" @default.
- W2904012980 creator A5004376448 @default.
- W2904012980 creator A5023663011 @default.
- W2904012980 creator A5044793228 @default.
- W2904012980 creator A5046641426 @default.
- W2904012980 creator A5085112616 @default.
- W2904012980 date "2018-09-01" @default.
- W2904012980 modified "2023-10-06" @default.
- W2904012980 title "Predictive Analysis to Improve Crop Yield using a Neural Network Model" @default.
- W2904012980 cites W1977816024 @default.
- W2904012980 cites W2008449060 @default.
- W2904012980 cites W2015925016 @default.
- W2904012980 cites W2117014758 @default.
- W2904012980 cites W2285035059 @default.
- W2904012980 doi "https://doi.org/10.1109/icacci.2018.8554851" @default.
- W2904012980 hasPublicationYear "2018" @default.
- W2904012980 type Work @default.
- W2904012980 sameAs 2904012980 @default.
- W2904012980 citedByCount "18" @default.
- W2904012980 countsByYear W29040129802019 @default.
- W2904012980 countsByYear W29040129802020 @default.
- W2904012980 countsByYear W29040129802021 @default.
- W2904012980 countsByYear W29040129802022 @default.
- W2904012980 countsByYear W29040129802023 @default.
- W2904012980 crossrefType "proceedings-article" @default.
- W2904012980 hasAuthorship W2904012980A5004376448 @default.
- W2904012980 hasAuthorship W2904012980A5023663011 @default.
- W2904012980 hasAuthorship W2904012980A5044793228 @default.
- W2904012980 hasAuthorship W2904012980A5046641426 @default.
- W2904012980 hasAuthorship W2904012980A5085112616 @default.
- W2904012980 hasConcept C118518473 @default.
- W2904012980 hasConcept C119857082 @default.
- W2904012980 hasConcept C126343540 @default.
- W2904012980 hasConcept C127413603 @default.
- W2904012980 hasConcept C134121241 @default.
- W2904012980 hasConcept C137580998 @default.
- W2904012980 hasConcept C144024400 @default.
- W2904012980 hasConcept C149923435 @default.
- W2904012980 hasConcept C154945302 @default.
- W2904012980 hasConcept C166957645 @default.
- W2904012980 hasConcept C191897082 @default.
- W2904012980 hasConcept C192562407 @default.
- W2904012980 hasConcept C205649164 @default.
- W2904012980 hasConcept C2908647359 @default.
- W2904012980 hasConcept C39432304 @default.
- W2904012980 hasConcept C41008148 @default.
- W2904012980 hasConcept C50644808 @default.
- W2904012980 hasConcept C6557445 @default.
- W2904012980 hasConcept C86803240 @default.
- W2904012980 hasConcept C88463610 @default.
- W2904012980 hasConcept C88862950 @default.
- W2904012980 hasConceptScore W2904012980C118518473 @default.
- W2904012980 hasConceptScore W2904012980C119857082 @default.
- W2904012980 hasConceptScore W2904012980C126343540 @default.
- W2904012980 hasConceptScore W2904012980C127413603 @default.
- W2904012980 hasConceptScore W2904012980C134121241 @default.
- W2904012980 hasConceptScore W2904012980C137580998 @default.
- W2904012980 hasConceptScore W2904012980C144024400 @default.
- W2904012980 hasConceptScore W2904012980C149923435 @default.
- W2904012980 hasConceptScore W2904012980C154945302 @default.
- W2904012980 hasConceptScore W2904012980C166957645 @default.
- W2904012980 hasConceptScore W2904012980C191897082 @default.
- W2904012980 hasConceptScore W2904012980C192562407 @default.
- W2904012980 hasConceptScore W2904012980C205649164 @default.
- W2904012980 hasConceptScore W2904012980C2908647359 @default.
- W2904012980 hasConceptScore W2904012980C39432304 @default.
- W2904012980 hasConceptScore W2904012980C41008148 @default.
- W2904012980 hasConceptScore W2904012980C50644808 @default.
- W2904012980 hasConceptScore W2904012980C6557445 @default.
- W2904012980 hasConceptScore W2904012980C86803240 @default.
- W2904012980 hasConceptScore W2904012980C88463610 @default.
- W2904012980 hasConceptScore W2904012980C88862950 @default.
- W2904012980 hasLocation W29040129801 @default.
- W2904012980 hasOpenAccess W2904012980 @default.
- W2904012980 hasPrimaryLocation W29040129801 @default.
- W2904012980 hasRelatedWork W11765363 @default.
- W2904012980 hasRelatedWork W2157742672 @default.
- W2904012980 hasRelatedWork W2386387936 @default.
- W2904012980 hasRelatedWork W2386920722 @default.
- W2904012980 hasRelatedWork W2748952813 @default.
- W2904012980 hasRelatedWork W2899084033 @default.
- W2904012980 hasRelatedWork W3107474891 @default.
- W2904012980 hasRelatedWork W644753246 @default.
- W2904012980 hasRelatedWork W1629725936 @default.
- W2904012980 hasRelatedWork W2802349271 @default.
- W2904012980 isParatext "false" @default.
- W2904012980 isRetracted "false" @default.
- W2904012980 magId "2904012980" @default.
- W2904012980 workType "article" @default.