Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904025145> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2904025145 endingPage "1" @default.
- W2904025145 startingPage "1" @default.
- W2904025145 abstract "Wong et al. 1 evaluate 19 clinical variables (training data) and three supervised machine-learning algorithms to predict early biochemical recurrence after robot-assisted prostatectomy. They further compare the areas under the curve (AUCs) resulting from these algorithms with the AUC of a conventional Cox regression model and conclude that the machine-learning algorithms can produce accurate disease prognosis, perhaps better than a traditional Cox regression model. As the authors state, predictive models have the potential to better individualize care to patients at highest risk of prostate cancer recurrence and progression. The authors should be commended for their adoption of machine-learning algorithms to better interpret the vast volumes of clinical data and assess prognosis after robot-assisted prostatectomy. This should represent another step forward for the management of prostate cancer, where tailored treatment is now largely based on the clinical risk stratification of the disease 2. Incidentally, we are also in an era where we are seeing aspects of artificial intelligence (machine learning being a subset of it) vastly transform how we view and process data in everyday life. This has been true in medicine as well, particularly for prostate cancer 3. While our own research group has also evaluated machine-learning algorithms to process surgeon performance metrics and predict clinical outcomes after robot-assisted prostatectomy 4, I want to express a word of caution. Utilization of machine learning does not in itself imply automatic superiority over conventional statistics 5 despite literature that has demonstrated so 3. The success of predictive models in machine learning still relies on the quality of data introduced and careful execution of the analysis. In our experience, it works best when highly experienced clinicians and data scientists are working hand in hand. Furthermore, I would argue that the results of this present study do not necessarily show that machine learning is superior to conventional statistics, but rather it highlights an inherent advantage of machine learning. While traditional analyses require the a priori selection of a model based on the available data, machine learning has more flexibility for model fitting 6. Additionally, inclusion of variables in traditional analyses is constrained by the sample size. In contrast, by design, machine learning models thrive on their ability to consider many variables concurrently, and as such, have the potential to detect underlying patterns that may otherwise be undetectable when data are examined effectively in individual silos. We look forward to the external validation of the methodology described in the present article. Big and diverse data are critical requirements of machine learning. A multi-institutional, multi-surgeon cohort is necessary to confirm the findings in this report. A further step from there is the adoption of such prediction models into clinical use. The ultimate question is how improved prognostic data may influence surgeon and patient decisions. Dr Hung reports personal fees from Ethicon, Inc, outside the submitted work." @default.
- W2904025145 created "2018-12-22" @default.
- W2904025145 creator A5079456405 @default.
- W2904025145 date "2018-12-18" @default.
- W2904025145 modified "2023-09-25" @default.
- W2904025145 title "Can machine-learning algorithms replace conventional statistics?" @default.
- W2904025145 cites W2102194577 @default.
- W2904025145 cites W2117792530 @default.
- W2904025145 cites W2120565180 @default.
- W2904025145 cites W2788941211 @default.
- W2904025145 cites W2809241522 @default.
- W2904025145 cites W2810566057 @default.
- W2904025145 doi "https://doi.org/10.1111/bju.14542" @default.
- W2904025145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30565402" @default.
- W2904025145 hasPublicationYear "2018" @default.
- W2904025145 type Work @default.
- W2904025145 sameAs 2904025145 @default.
- W2904025145 citedByCount "12" @default.
- W2904025145 countsByYear W29040251452018 @default.
- W2904025145 countsByYear W29040251452019 @default.
- W2904025145 countsByYear W29040251452020 @default.
- W2904025145 countsByYear W29040251452021 @default.
- W2904025145 countsByYear W29040251452022 @default.
- W2904025145 countsByYear W29040251452023 @default.
- W2904025145 crossrefType "journal-article" @default.
- W2904025145 hasAuthorship W2904025145A5079456405 @default.
- W2904025145 hasBestOaLocation W29040251451 @default.
- W2904025145 hasConcept C11413529 @default.
- W2904025145 hasConcept C119857082 @default.
- W2904025145 hasConcept C121608353 @default.
- W2904025145 hasConcept C126322002 @default.
- W2904025145 hasConcept C154945302 @default.
- W2904025145 hasConcept C2779466945 @default.
- W2904025145 hasConcept C2780192828 @default.
- W2904025145 hasConcept C41008148 @default.
- W2904025145 hasConcept C71924100 @default.
- W2904025145 hasConceptScore W2904025145C11413529 @default.
- W2904025145 hasConceptScore W2904025145C119857082 @default.
- W2904025145 hasConceptScore W2904025145C121608353 @default.
- W2904025145 hasConceptScore W2904025145C126322002 @default.
- W2904025145 hasConceptScore W2904025145C154945302 @default.
- W2904025145 hasConceptScore W2904025145C2779466945 @default.
- W2904025145 hasConceptScore W2904025145C2780192828 @default.
- W2904025145 hasConceptScore W2904025145C41008148 @default.
- W2904025145 hasConceptScore W2904025145C71924100 @default.
- W2904025145 hasIssue "1" @default.
- W2904025145 hasLocation W29040251451 @default.
- W2904025145 hasLocation W29040251452 @default.
- W2904025145 hasOpenAccess W2904025145 @default.
- W2904025145 hasPrimaryLocation W29040251451 @default.
- W2904025145 hasRelatedWork W1995011828 @default.
- W2904025145 hasRelatedWork W2065437117 @default.
- W2904025145 hasRelatedWork W2084343070 @default.
- W2904025145 hasRelatedWork W2107102367 @default.
- W2904025145 hasRelatedWork W2172257731 @default.
- W2904025145 hasRelatedWork W2357830838 @default.
- W2904025145 hasRelatedWork W2739639087 @default.
- W2904025145 hasRelatedWork W2748952813 @default.
- W2904025145 hasRelatedWork W2810336292 @default.
- W2904025145 hasRelatedWork W2899084033 @default.
- W2904025145 hasVolume "123" @default.
- W2904025145 isParatext "false" @default.
- W2904025145 isRetracted "false" @default.
- W2904025145 magId "2904025145" @default.
- W2904025145 workType "article" @default.