Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904032257> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2904032257 endingPage "2618" @default.
- W2904032257 startingPage "2611" @default.
- W2904032257 abstract "The Bayesian Network approach is a probabilistic method with an increasing use in the risk assessment of complex systems. It has proven to be a reliable and powerful tool with the flexibility to include different types of data (from experimental data to expert judgement). The incorporation of system reliability methods allows traditional Bayesian networks to work with random variables with discrete and continuous distributions. On the other hand, probabilistic uncertainty comes from the complexity of reality that scientists try to reproduce by setting a controlled experiment, while imprecision is related to the quality of the specific instrument making the measurements. This imprecision or lack of data can be taken into account by the use of intervals and probability boxes as random variables in the network. The resolution of the system reliability problems to deal with these kinds of uncertainties has been carried out adopting Monte Carlo simulations. However, the latter method is computationally expensive preventing from producing a real-time analysis of the system represented by the network. In this work, the line sampling algorithm is used as an effective method to improve the efficiency of the reduction process from enhanced to traditional Bayesian networks. This allows to preserve all the advantages without increasing excessively the computational cost of the analysis. As an application example, a risk assessment of an oscillating water column is carried out using data obtained in the laboratory. The proposed method is run using the multipurpose software OpenCossan." @default.
- W2904032257 created "2018-12-22" @default.
- W2904032257 creator A5022545484 @default.
- W2904032257 creator A5036939146 @default.
- W2904032257 creator A5038599758 @default.
- W2904032257 creator A5084210255 @default.
- W2904032257 date "2018-06-15" @default.
- W2904032257 modified "2023-09-25" @default.
- W2904032257 title "Bayesian networks with imprecise datasets: Application to oscillating water column" @default.
- W2904032257 cites W2591576469 @default.
- W2904032257 doi "https://doi.org/10.1201/9781351174664-328" @default.
- W2904032257 hasPublicationYear "2018" @default.
- W2904032257 type Work @default.
- W2904032257 sameAs 2904032257 @default.
- W2904032257 citedByCount "0" @default.
- W2904032257 crossrefType "book-chapter" @default.
- W2904032257 hasAuthorship W2904032257A5022545484 @default.
- W2904032257 hasAuthorship W2904032257A5036939146 @default.
- W2904032257 hasAuthorship W2904032257A5038599758 @default.
- W2904032257 hasAuthorship W2904032257A5084210255 @default.
- W2904032257 hasBestOaLocation W29040322571 @default.
- W2904032257 hasConcept C105795698 @default.
- W2904032257 hasConcept C107673813 @default.
- W2904032257 hasConcept C119857082 @default.
- W2904032257 hasConcept C121332964 @default.
- W2904032257 hasConcept C122123141 @default.
- W2904032257 hasConcept C124101348 @default.
- W2904032257 hasConcept C154945302 @default.
- W2904032257 hasConcept C163258240 @default.
- W2904032257 hasConcept C19499675 @default.
- W2904032257 hasConcept C2780598303 @default.
- W2904032257 hasConcept C33724603 @default.
- W2904032257 hasConcept C33923547 @default.
- W2904032257 hasConcept C41008148 @default.
- W2904032257 hasConcept C43214815 @default.
- W2904032257 hasConcept C49937458 @default.
- W2904032257 hasConcept C62520636 @default.
- W2904032257 hasConceptScore W2904032257C105795698 @default.
- W2904032257 hasConceptScore W2904032257C107673813 @default.
- W2904032257 hasConceptScore W2904032257C119857082 @default.
- W2904032257 hasConceptScore W2904032257C121332964 @default.
- W2904032257 hasConceptScore W2904032257C122123141 @default.
- W2904032257 hasConceptScore W2904032257C124101348 @default.
- W2904032257 hasConceptScore W2904032257C154945302 @default.
- W2904032257 hasConceptScore W2904032257C163258240 @default.
- W2904032257 hasConceptScore W2904032257C19499675 @default.
- W2904032257 hasConceptScore W2904032257C2780598303 @default.
- W2904032257 hasConceptScore W2904032257C33724603 @default.
- W2904032257 hasConceptScore W2904032257C33923547 @default.
- W2904032257 hasConceptScore W2904032257C41008148 @default.
- W2904032257 hasConceptScore W2904032257C43214815 @default.
- W2904032257 hasConceptScore W2904032257C49937458 @default.
- W2904032257 hasConceptScore W2904032257C62520636 @default.
- W2904032257 hasLocation W29040322571 @default.
- W2904032257 hasLocation W29040322572 @default.
- W2904032257 hasOpenAccess W2904032257 @default.
- W2904032257 hasPrimaryLocation W29040322571 @default.
- W2904032257 hasRelatedWork W1966362790 @default.
- W2904032257 hasRelatedWork W1978363033 @default.
- W2904032257 hasRelatedWork W1994599953 @default.
- W2904032257 hasRelatedWork W2032136265 @default.
- W2904032257 hasRelatedWork W2113750341 @default.
- W2904032257 hasRelatedWork W2118490038 @default.
- W2904032257 hasRelatedWork W2140470317 @default.
- W2904032257 hasRelatedWork W2160015894 @default.
- W2904032257 hasRelatedWork W2187189919 @default.
- W2904032257 hasRelatedWork W2325785893 @default.
- W2904032257 hasRelatedWork W2333789400 @default.
- W2904032257 hasRelatedWork W2378497658 @default.
- W2904032257 hasRelatedWork W2495090721 @default.
- W2904032257 hasRelatedWork W2524348167 @default.
- W2904032257 hasRelatedWork W2611228700 @default.
- W2904032257 hasRelatedWork W2760459014 @default.
- W2904032257 hasRelatedWork W2766949708 @default.
- W2904032257 hasRelatedWork W2790885225 @default.
- W2904032257 hasRelatedWork W2950374163 @default.
- W2904032257 hasRelatedWork W3046121557 @default.
- W2904032257 isParatext "false" @default.
- W2904032257 isRetracted "false" @default.
- W2904032257 magId "2904032257" @default.
- W2904032257 workType "book-chapter" @default.