Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904074328> ?p ?o ?g. }
- W2904074328 endingPage "78" @default.
- W2904074328 startingPage "59" @default.
- W2904074328 abstract "Floods are a hazard for artificial structures and humans. From natural hazard management point of view, present the new techniques to assess the flood susceptibility is considerably important. The aim of this research is on one hand to evaluate applicability of different machine learning and advanced techniques (MLTs) for flood susceptibility analysis and on the other hand to investigate of the contribution of geo-environmental factors to flood inundation in a semi-arid part of SW Iran. Here, we compare the performance of six modeling techniques namely random forest (RF), maximum entropy (ME), multivariate adaptive regression splines (MARS), general linear model (GLM), generalized additive model (GAM), and classification and regression tree (CART)for first time to spatial predict the flood prone-area at Tashan Watershed, southwestern Iran. In the first step of study, a flood inventory map with 169 flood events was constructed through field surveys. These flood locations were then spatially randomly split into train, and validation sets with two different proportions of ratio 70 and 30%. Ten flood conditioning factors such as landuse, lithology, drainage density, distance from roads, topographic wetness index (TWI), slope aspect, distance from rivers, slope angle, plan curvature and altitude were considered in the analysis. In addition, learning vector quantization (LVQ) was used as a new supervised neural network algorithm to analyse thevariable importance. The applied models were evaluated for performance appliyng the area under the receiver operating characteristic curve (AUC). The result demonstrated that CART had the AUC value of 93.96%. It was followed by ME (88.58%), RF (86.81%), GAM (81.35%), MARS (75.62%), and GLM (73.66%)." @default.
- W2904074328 created "2018-12-22" @default.
- W2904074328 creator A5006705342 @default.
- W2904074328 creator A5039567207 @default.
- W2904074328 creator A5041402625 @default.
- W2904074328 date "2018-12-13" @default.
- W2904074328 modified "2023-10-02" @default.
- W2904074328 title "Assessment of the Contribution of Geo-environmental Factors to Flood Inundation in a Semi-arid Region of SW Iran: Comparison of Different Advanced Modeling Approaches" @default.
- W2904074328 cites W1120803637 @default.
- W2904074328 cites W1186112364 @default.
- W2904074328 cites W1192997862 @default.
- W2904074328 cites W1480376833 @default.
- W2904074328 cites W1942836393 @default.
- W2904074328 cites W1967335776 @default.
- W2904074328 cites W1971261668 @default.
- W2904074328 cites W1972110194 @default.
- W2904074328 cites W1974614011 @default.
- W2904074328 cites W1975914988 @default.
- W2904074328 cites W1977069065 @default.
- W2904074328 cites W1979759959 @default.
- W2904074328 cites W1981646498 @default.
- W2904074328 cites W1984065426 @default.
- W2904074328 cites W1989158271 @default.
- W2904074328 cites W1989692403 @default.
- W2904074328 cites W1993934953 @default.
- W2904074328 cites W1994454004 @default.
- W2904074328 cites W2003049509 @default.
- W2904074328 cites W2012118327 @default.
- W2904074328 cites W2012738906 @default.
- W2904074328 cites W2013713766 @default.
- W2904074328 cites W2019957091 @default.
- W2904074328 cites W2027386095 @default.
- W2904074328 cites W2039830881 @default.
- W2904074328 cites W2042315239 @default.
- W2904074328 cites W2057039778 @default.
- W2904074328 cites W2065642067 @default.
- W2904074328 cites W2069483533 @default.
- W2904074328 cites W2069663627 @default.
- W2904074328 cites W2069930921 @default.
- W2904074328 cites W2076475918 @default.
- W2904074328 cites W2086063614 @default.
- W2904074328 cites W2102201073 @default.
- W2904074328 cites W2107777184 @default.
- W2904074328 cites W2120630093 @default.
- W2904074328 cites W2133642590 @default.
- W2904074328 cites W2139086914 @default.
- W2904074328 cites W2139416101 @default.
- W2904074328 cites W2142181701 @default.
- W2904074328 cites W2148541475 @default.
- W2904074328 cites W2208293910 @default.
- W2904074328 cites W2911964244 @default.
- W2904074328 cites W4210949798 @default.
- W2904074328 cites W4244998381 @default.
- W2904074328 cites W596984334 @default.
- W2904074328 doi "https://doi.org/10.1007/978-3-319-73383-8_3" @default.
- W2904074328 hasPublicationYear "2018" @default.
- W2904074328 type Work @default.
- W2904074328 sameAs 2904074328 @default.
- W2904074328 citedByCount "7" @default.
- W2904074328 countsByYear W29040743282019 @default.
- W2904074328 countsByYear W29040743282021 @default.
- W2904074328 countsByYear W29040743282022 @default.
- W2904074328 countsByYear W29040743282023 @default.
- W2904074328 crossrefType "book-chapter" @default.
- W2904074328 hasAuthorship W2904074328A5006705342 @default.
- W2904074328 hasAuthorship W2904074328A5039567207 @default.
- W2904074328 hasAuthorship W2904074328A5041402625 @default.
- W2904074328 hasConcept C105795698 @default.
- W2904074328 hasConcept C119857082 @default.
- W2904074328 hasConcept C127313418 @default.
- W2904074328 hasConcept C152877465 @default.
- W2904074328 hasConcept C166957645 @default.
- W2904074328 hasConcept C169258074 @default.
- W2904074328 hasConcept C181843262 @default.
- W2904074328 hasConcept C187320778 @default.
- W2904074328 hasConcept C205649164 @default.
- W2904074328 hasConcept C2776898743 @default.
- W2904074328 hasConcept C33923547 @default.
- W2904074328 hasConcept C39432304 @default.
- W2904074328 hasConcept C40567965 @default.
- W2904074328 hasConcept C41008148 @default.
- W2904074328 hasConcept C44882253 @default.
- W2904074328 hasConcept C50644808 @default.
- W2904074328 hasConcept C62649853 @default.
- W2904074328 hasConcept C64946054 @default.
- W2904074328 hasConcept C74256435 @default.
- W2904074328 hasConcept C76886044 @default.
- W2904074328 hasConceptScore W2904074328C105795698 @default.
- W2904074328 hasConceptScore W2904074328C119857082 @default.
- W2904074328 hasConceptScore W2904074328C127313418 @default.
- W2904074328 hasConceptScore W2904074328C152877465 @default.
- W2904074328 hasConceptScore W2904074328C166957645 @default.
- W2904074328 hasConceptScore W2904074328C169258074 @default.
- W2904074328 hasConceptScore W2904074328C181843262 @default.
- W2904074328 hasConceptScore W2904074328C187320778 @default.
- W2904074328 hasConceptScore W2904074328C205649164 @default.
- W2904074328 hasConceptScore W2904074328C2776898743 @default.
- W2904074328 hasConceptScore W2904074328C33923547 @default.