Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904080392> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2904080392 endingPage "2047" @default.
- W2904080392 startingPage "2047" @default.
- W2904080392 abstract "Investigating mangrove species composition is a basic and important topic in wetland management and conservation. This study aims to explore the potential of close-range hyperspectral imaging with a snapshot hyperspectral sensor for identifying mangrove species under field conditions. Specifically, we assessed the data pre-processing and transformation, waveband selection and machine-learning techniques to develop an optimal classification scheme for eight mangrove species in Qi'ao Island of Zhuhai, Guangdong, China. After data pre-processing and transformation, five spectral datasets, which included the reflectance spectra R and its first-order derivative d(R), the logarithm of the reflectance spectra log(R) and its first-order derivative d[log(R)], and hyperspectral vegetation indices (VIs), were used as the input data for each classifier. Consequently, three waveband selection methods, including the stepwise discriminant analysis (SDA), correlation-based feature selection (CFS), and successive projections algorithm (SPA) were used to reduce dimensionality and select the effective wavebands for identifying mangrove species. Furthermore, we evaluated the performance of mangrove species classification using four classifiers, including linear discriminant analysis (LDA), k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). Application of the four considered classifiers on the reflectance spectra of all wavebands yielded overall classification accuracies of the eight mangrove species higher than 80%, with SVM having the highest accuracy of 93.54% (Kappa=0.9256). Using the selected wavebands derived from SPA, the accuracy of SVM reached 93.13% (Kappa=0.9208). The addition of hyperspectral VIs and d[log(R)] spectral datasets further improves the accuracies to 93.54% (Kappa=0.9253) and 96.46% (Kappa=0.9591), respectively. These results suggest that it is highly effective to apply field close-range snapshot hyperspectral images and machine-learning classifiers to classify mangrove species." @default.
- W2904080392 created "2018-12-22" @default.
- W2904080392 creator A5027835055 @default.
- W2904080392 creator A5028584961 @default.
- W2904080392 creator A5038197685 @default.
- W2904080392 creator A5051363890 @default.
- W2904080392 creator A5087889772 @default.
- W2904080392 date "2018-12-16" @default.
- W2904080392 modified "2023-10-14" @default.
- W2904080392 title "Identifying Mangrove Species Using Field Close-Range Snapshot Hyperspectral Imaging and Machine-Learning Techniques" @default.
- W2904080392 doi "https://doi.org/10.3390/rs10122047" @default.
- W2904080392 hasPublicationYear "2018" @default.
- W2904080392 type Work @default.
- W2904080392 sameAs 2904080392 @default.
- W2904080392 citedByCount "25" @default.
- W2904080392 countsByYear W29040803922019 @default.
- W2904080392 countsByYear W29040803922020 @default.
- W2904080392 countsByYear W29040803922021 @default.
- W2904080392 countsByYear W29040803922022 @default.
- W2904080392 countsByYear W29040803922023 @default.
- W2904080392 crossrefType "journal-article" @default.
- W2904080392 hasAuthorship W2904080392A5027835055 @default.
- W2904080392 hasAuthorship W2904080392A5028584961 @default.
- W2904080392 hasAuthorship W2904080392A5038197685 @default.
- W2904080392 hasAuthorship W2904080392A5051363890 @default.
- W2904080392 hasAuthorship W2904080392A5087889772 @default.
- W2904080392 hasBestOaLocation W29040803921 @default.
- W2904080392 hasConcept C119857082 @default.
- W2904080392 hasConcept C12267149 @default.
- W2904080392 hasConcept C148483581 @default.
- W2904080392 hasConcept C153180895 @default.
- W2904080392 hasConcept C154945302 @default.
- W2904080392 hasConcept C159078339 @default.
- W2904080392 hasConcept C163864269 @default.
- W2904080392 hasConcept C169258074 @default.
- W2904080392 hasConcept C18903297 @default.
- W2904080392 hasConcept C205649164 @default.
- W2904080392 hasConcept C33923547 @default.
- W2904080392 hasConcept C41008148 @default.
- W2904080392 hasConcept C62649853 @default.
- W2904080392 hasConcept C68874143 @default.
- W2904080392 hasConcept C69738355 @default.
- W2904080392 hasConcept C70518039 @default.
- W2904080392 hasConcept C86803240 @default.
- W2904080392 hasConceptScore W2904080392C119857082 @default.
- W2904080392 hasConceptScore W2904080392C12267149 @default.
- W2904080392 hasConceptScore W2904080392C148483581 @default.
- W2904080392 hasConceptScore W2904080392C153180895 @default.
- W2904080392 hasConceptScore W2904080392C154945302 @default.
- W2904080392 hasConceptScore W2904080392C159078339 @default.
- W2904080392 hasConceptScore W2904080392C163864269 @default.
- W2904080392 hasConceptScore W2904080392C169258074 @default.
- W2904080392 hasConceptScore W2904080392C18903297 @default.
- W2904080392 hasConceptScore W2904080392C205649164 @default.
- W2904080392 hasConceptScore W2904080392C33923547 @default.
- W2904080392 hasConceptScore W2904080392C41008148 @default.
- W2904080392 hasConceptScore W2904080392C62649853 @default.
- W2904080392 hasConceptScore W2904080392C68874143 @default.
- W2904080392 hasConceptScore W2904080392C69738355 @default.
- W2904080392 hasConceptScore W2904080392C70518039 @default.
- W2904080392 hasConceptScore W2904080392C86803240 @default.
- W2904080392 hasFunder F4320321001 @default.
- W2904080392 hasIssue "12" @default.
- W2904080392 hasLocation W29040803921 @default.
- W2904080392 hasLocation W29040803922 @default.
- W2904080392 hasOpenAccess W2904080392 @default.
- W2904080392 hasPrimaryLocation W29040803921 @default.
- W2904080392 hasRelatedWork W1505313971 @default.
- W2904080392 hasRelatedWork W1623999640 @default.
- W2904080392 hasRelatedWork W2048060766 @default.
- W2904080392 hasRelatedWork W2152845367 @default.
- W2904080392 hasRelatedWork W2355203151 @default.
- W2904080392 hasRelatedWork W2606573655 @default.
- W2904080392 hasRelatedWork W2765685702 @default.
- W2904080392 hasRelatedWork W2918094137 @default.
- W2904080392 hasRelatedWork W4292879257 @default.
- W2904080392 hasRelatedWork W2345184372 @default.
- W2904080392 hasVolume "10" @default.
- W2904080392 isParatext "false" @default.
- W2904080392 isRetracted "false" @default.
- W2904080392 magId "2904080392" @default.
- W2904080392 workType "article" @default.