Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904080489> ?p ?o ?g. }
- W2904080489 abstract "Many studies of neural activity in behaving animals aim to discover interpretable low-dimensional structure in large-scale neural population recordings. One approach to this problem is demixed principal component analysis (dPCA), a supervised linear dimensionality reduction technique to find components that depend on particular experimental parameters. Here, I introduce kernel dPCA (kdPCA) as a nonlinear extension of dPCA by applying kernel least-squares regression to the demixing problem. I consider simulated examples of neural populations with low-dimensional activity to compare the components recovered from dPCA and kdPCA. These simulations demonstrate that neurally relevant nonlinearities, such as stimulus-dependent gain and rotation, interfere with linear demixing of neural activity into components that represent to individual experimental parameters. However, kdPCA can still recover interpretable components in these examples. Finally, I demonstrate kdPCA using two examples of neural populations recorded during perceptual decision-making tasks." @default.
- W2904080489 created "2018-12-22" @default.
- W2904080489 creator A5003778431 @default.
- W2904080489 date "2018-12-19" @default.
- W2904080489 modified "2023-09-27" @default.
- W2904080489 title "Nonlinear demixed component analysis for neural population data as a low-rank kernel regression problem" @default.
- W2904080489 cites W1563088657 @default.
- W2904080489 cites W1974803102 @default.
- W2904080489 cites W2005051528 @default.
- W2904080489 cites W2017539895 @default.
- W2904080489 cites W2043608504 @default.
- W2904080489 cites W2085406430 @default.
- W2904080489 cites W2086578108 @default.
- W2904080489 cites W2087185095 @default.
- W2904080489 cites W2097308346 @default.
- W2904080489 cites W2098290597 @default.
- W2904080489 cites W2100235303 @default.
- W2904080489 cites W2130055251 @default.
- W2904080489 cites W2140095548 @default.
- W2904080489 cites W2144095870 @default.
- W2904080489 cites W2157380881 @default.
- W2904080489 cites W2160719354 @default.
- W2904080489 cites W2171281863 @default.
- W2904080489 cites W2187089797 @default.
- W2904080489 cites W2337492206 @default.
- W2904080489 cites W2478982999 @default.
- W2904080489 cites W2487770199 @default.
- W2904080489 cites W2621961142 @default.
- W2904080489 cites W2809811537 @default.
- W2904080489 cites W2904962417 @default.
- W2904080489 cites W2949218890 @default.
- W2904080489 cites W2951881727 @default.
- W2904080489 cites W3124700334 @default.
- W2904080489 hasPublicationYear "2018" @default.
- W2904080489 type Work @default.
- W2904080489 sameAs 2904080489 @default.
- W2904080489 citedByCount "0" @default.
- W2904080489 crossrefType "posted-content" @default.
- W2904080489 hasAuthorship W2904080489A5003778431 @default.
- W2904080489 hasConcept C111030470 @default.
- W2904080489 hasConcept C114614502 @default.
- W2904080489 hasConcept C119857082 @default.
- W2904080489 hasConcept C121332964 @default.
- W2904080489 hasConcept C122280245 @default.
- W2904080489 hasConcept C12267149 @default.
- W2904080489 hasConcept C144024400 @default.
- W2904080489 hasConcept C149923435 @default.
- W2904080489 hasConcept C153180895 @default.
- W2904080489 hasConcept C154945302 @default.
- W2904080489 hasConcept C158622935 @default.
- W2904080489 hasConcept C182335926 @default.
- W2904080489 hasConcept C27438332 @default.
- W2904080489 hasConcept C2908647359 @default.
- W2904080489 hasConcept C33923547 @default.
- W2904080489 hasConcept C41008148 @default.
- W2904080489 hasConcept C50644808 @default.
- W2904080489 hasConcept C62520636 @default.
- W2904080489 hasConcept C70518039 @default.
- W2904080489 hasConcept C74193536 @default.
- W2904080489 hasConcept C74887250 @default.
- W2904080489 hasConceptScore W2904080489C111030470 @default.
- W2904080489 hasConceptScore W2904080489C114614502 @default.
- W2904080489 hasConceptScore W2904080489C119857082 @default.
- W2904080489 hasConceptScore W2904080489C121332964 @default.
- W2904080489 hasConceptScore W2904080489C122280245 @default.
- W2904080489 hasConceptScore W2904080489C12267149 @default.
- W2904080489 hasConceptScore W2904080489C144024400 @default.
- W2904080489 hasConceptScore W2904080489C149923435 @default.
- W2904080489 hasConceptScore W2904080489C153180895 @default.
- W2904080489 hasConceptScore W2904080489C154945302 @default.
- W2904080489 hasConceptScore W2904080489C158622935 @default.
- W2904080489 hasConceptScore W2904080489C182335926 @default.
- W2904080489 hasConceptScore W2904080489C27438332 @default.
- W2904080489 hasConceptScore W2904080489C2908647359 @default.
- W2904080489 hasConceptScore W2904080489C33923547 @default.
- W2904080489 hasConceptScore W2904080489C41008148 @default.
- W2904080489 hasConceptScore W2904080489C50644808 @default.
- W2904080489 hasConceptScore W2904080489C62520636 @default.
- W2904080489 hasConceptScore W2904080489C70518039 @default.
- W2904080489 hasConceptScore W2904080489C74193536 @default.
- W2904080489 hasConceptScore W2904080489C74887250 @default.
- W2904080489 hasLocation W29040804891 @default.
- W2904080489 hasOpenAccess W2904080489 @default.
- W2904080489 hasPrimaryLocation W29040804891 @default.
- W2904080489 hasRelatedWork W1510071118 @default.
- W2904080489 hasRelatedWork W1597303045 @default.
- W2904080489 hasRelatedWork W1648965208 @default.
- W2904080489 hasRelatedWork W1841388496 @default.
- W2904080489 hasRelatedWork W1855392037 @default.
- W2904080489 hasRelatedWork W1982606067 @default.
- W2904080489 hasRelatedWork W2050222016 @default.
- W2904080489 hasRelatedWork W2057617126 @default.
- W2904080489 hasRelatedWork W2063692987 @default.
- W2904080489 hasRelatedWork W2074033194 @default.
- W2904080489 hasRelatedWork W2167998037 @default.
- W2904080489 hasRelatedWork W2588574459 @default.
- W2904080489 hasRelatedWork W2594379800 @default.
- W2904080489 hasRelatedWork W2912741785 @default.
- W2904080489 hasRelatedWork W2946867244 @default.
- W2904080489 hasRelatedWork W2981778490 @default.