Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904102527> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2904102527 endingPage "674" @default.
- W2904102527 startingPage "668" @default.
- W2904102527 abstract "New findings from cognitive science, computer science, and psychology should be used to develop better artificial intelligence (AI). One of the important goals in AI development is the accurate understanding and prediction of the behaviors and decision-making processes of humans. It is especially demanding to achieve this for real dynamic settings, characterized by constant changes. Individual differences in decision-making and behavior make this even more challenging. The area of human-computer interaction looks at a series of decisions and multifactor situations which are influenced by corresponding feedback. Cognitive modeling provides us with a method to understand and explain how such dynamic decisions are made. This work is a demonstration of how cognitive modeling allows to flexible simulate decision-making in dynamic environments for different individual strategies. In this work an empirical study of an improved complex category learning task is presented, the study is based on previous work [8]. The task requires participants to categorize tones (consisting of different features) by applying acoustic strategies to define a target category and adapt to a reversal of feedback. Thus, a model based on the cognitive architecture ACT-R is developed. This model firstly tries out one-feature strategies (e.g. frequency) and then switches to two-feature strategies (e.g. frequency + volume) as a result of negative feedback. However, after comparing the model fit data and analyzing each individual’s data and answers, there is a great variance among some individuals and the first model which only considers acoustic feature strategies and cannot predict individuals who consider the uncertain correct button representing target tones. The upgraded second model contains two independent threshold count mechanisms for these two factors’ learning process. The result of the second model provides a better approximation of the values with the empirical data of those subjects who prefer to consider multi-factors in the tasks. It proves the extensibility of this ACT-R cognitive modeling approach for the different individual cases. A great potential of our approach is, that it can be applied to other HCI tasks and thus it can contribute to related AI approaches and help build AIs with a better understanding of human decision-making." @default.
- W2904102527 created "2018-12-22" @default.
- W2904102527 creator A5007635431 @default.
- W2904102527 creator A5029839968 @default.
- W2904102527 creator A5085548872 @default.
- W2904102527 date "2018-01-01" @default.
- W2904102527 modified "2023-10-18" @default.
- W2904102527 title "Modeling Individual Strategies in Dynamic Decision-making with ACT-R: A Task Toward Decision-making Assistance in HCI" @default.
- W2904102527 cites W1991642024 @default.
- W2904102527 cites W2065070540 @default.
- W2904102527 cites W2078874531 @default.
- W2904102527 cites W2096130600 @default.
- W2904102527 cites W2120687792 @default.
- W2904102527 cites W2514598975 @default.
- W2904102527 cites W2738465457 @default.
- W2904102527 doi "https://doi.org/10.1016/j.procs.2018.11.064" @default.
- W2904102527 hasPublicationYear "2018" @default.
- W2904102527 type Work @default.
- W2904102527 sameAs 2904102527 @default.
- W2904102527 citedByCount "7" @default.
- W2904102527 countsByYear W29041025272020 @default.
- W2904102527 countsByYear W29041025272021 @default.
- W2904102527 countsByYear W29041025272022 @default.
- W2904102527 countsByYear W29041025272023 @default.
- W2904102527 crossrefType "journal-article" @default.
- W2904102527 hasAuthorship W2904102527A5007635431 @default.
- W2904102527 hasAuthorship W2904102527A5029839968 @default.
- W2904102527 hasAuthorship W2904102527A5085548872 @default.
- W2904102527 hasBestOaLocation W29041025271 @default.
- W2904102527 hasConcept C107457646 @default.
- W2904102527 hasConcept C119857082 @default.
- W2904102527 hasConcept C121955636 @default.
- W2904102527 hasConcept C138885662 @default.
- W2904102527 hasConcept C144133560 @default.
- W2904102527 hasConcept C154945302 @default.
- W2904102527 hasConcept C15744967 @default.
- W2904102527 hasConcept C161407221 @default.
- W2904102527 hasConcept C162324750 @default.
- W2904102527 hasConcept C169760540 @default.
- W2904102527 hasConcept C169900460 @default.
- W2904102527 hasConcept C174988536 @default.
- W2904102527 hasConcept C187736073 @default.
- W2904102527 hasConcept C196083921 @default.
- W2904102527 hasConcept C2776401178 @default.
- W2904102527 hasConcept C2780451532 @default.
- W2904102527 hasConcept C41008148 @default.
- W2904102527 hasConcept C41895202 @default.
- W2904102527 hasConcept C94124525 @default.
- W2904102527 hasConceptScore W2904102527C107457646 @default.
- W2904102527 hasConceptScore W2904102527C119857082 @default.
- W2904102527 hasConceptScore W2904102527C121955636 @default.
- W2904102527 hasConceptScore W2904102527C138885662 @default.
- W2904102527 hasConceptScore W2904102527C144133560 @default.
- W2904102527 hasConceptScore W2904102527C154945302 @default.
- W2904102527 hasConceptScore W2904102527C15744967 @default.
- W2904102527 hasConceptScore W2904102527C161407221 @default.
- W2904102527 hasConceptScore W2904102527C162324750 @default.
- W2904102527 hasConceptScore W2904102527C169760540 @default.
- W2904102527 hasConceptScore W2904102527C169900460 @default.
- W2904102527 hasConceptScore W2904102527C174988536 @default.
- W2904102527 hasConceptScore W2904102527C187736073 @default.
- W2904102527 hasConceptScore W2904102527C196083921 @default.
- W2904102527 hasConceptScore W2904102527C2776401178 @default.
- W2904102527 hasConceptScore W2904102527C2780451532 @default.
- W2904102527 hasConceptScore W2904102527C41008148 @default.
- W2904102527 hasConceptScore W2904102527C41895202 @default.
- W2904102527 hasConceptScore W2904102527C94124525 @default.
- W2904102527 hasLocation W29041025271 @default.
- W2904102527 hasOpenAccess W2904102527 @default.
- W2904102527 hasPrimaryLocation W29041025271 @default.
- W2904102527 hasRelatedWork W2040397200 @default.
- W2904102527 hasRelatedWork W2047139419 @default.
- W2904102527 hasRelatedWork W2145638130 @default.
- W2904102527 hasRelatedWork W2157756600 @default.
- W2904102527 hasRelatedWork W2329176058 @default.
- W2904102527 hasRelatedWork W2365213443 @default.
- W2904102527 hasRelatedWork W2961085424 @default.
- W2904102527 hasRelatedWork W4238765805 @default.
- W2904102527 hasRelatedWork W4306674287 @default.
- W2904102527 hasRelatedWork W2284097944 @default.
- W2904102527 hasVolume "145" @default.
- W2904102527 isParatext "false" @default.
- W2904102527 isRetracted "false" @default.
- W2904102527 magId "2904102527" @default.
- W2904102527 workType "article" @default.