Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904103348> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2904103348 endingPage "795" @default.
- W2904103348 startingPage "789" @default.
- W2904103348 abstract "Trajectory tracking and crossing intention prediction of pedestrians at intersections are important to intersection safety. Recently, on-board video sensors have been developed for detection of pedestrians. However, both the detection range and operating environment of video-based systems seem to be constrained by the advancement of image-processing technologies. Additionally, on-board systems cannot alarm pedestrians to take evasive actions when at risk, a feature which is critical to saving lives. This paper summarises the authors' practice on using roadside LiDAR sensors to monitor and predict pedestrians' crossing intention, as part of an ongoing effort to develop a pioneering LiDAR-based system to systematically reduce pedestrian and vehicle collisions at intersections. The LiDAR sensors were installed at intersections to collect pedestrian data such as presence, location, velocity, and direction. A new method based on deep autoencoder - artificial neural network (DA-ANN) was used to process data and predict pedestrian crossing intention. The case study shows the proposed model is about 95% prediction accuracy and computational efficiency for real-time systems. The roadside LiDAR system has great potential to significantly reduce vehicle-to-pedestrian crashes both at intersections and non-intersection areas, either used as a stand-alone system or in conjunction with the connected V2I and I2V technologies." @default.
- W2904103348 created "2018-12-22" @default.
- W2904103348 creator A5011726721 @default.
- W2904103348 creator A5028257049 @default.
- W2904103348 creator A5073173638 @default.
- W2904103348 creator A5078176055 @default.
- W2904103348 creator A5089002679 @default.
- W2904103348 date "2019-01-09" @default.
- W2904103348 modified "2023-10-13" @default.
- W2904103348 title "Trajectory tracking and prediction of pedestrian's crossing intention using roadside LiDAR" @default.
- W2904103348 cites W2004641798 @default.
- W2904103348 cites W2088173505 @default.
- W2904103348 cites W2100495367 @default.
- W2904103348 cites W2131579350 @default.
- W2904103348 cites W2158539027 @default.
- W2904103348 cites W2207374674 @default.
- W2904103348 cites W2767077474 @default.
- W2904103348 cites W4231109964 @default.
- W2904103348 doi "https://doi.org/10.1049/iet-its.2018.5258" @default.
- W2904103348 hasPublicationYear "2019" @default.
- W2904103348 type Work @default.
- W2904103348 sameAs 2904103348 @default.
- W2904103348 citedByCount "33" @default.
- W2904103348 countsByYear W29041033482019 @default.
- W2904103348 countsByYear W29041033482020 @default.
- W2904103348 countsByYear W29041033482021 @default.
- W2904103348 countsByYear W29041033482022 @default.
- W2904103348 countsByYear W29041033482023 @default.
- W2904103348 crossrefType "journal-article" @default.
- W2904103348 hasAuthorship W2904103348A5011726721 @default.
- W2904103348 hasAuthorship W2904103348A5028257049 @default.
- W2904103348 hasAuthorship W2904103348A5073173638 @default.
- W2904103348 hasAuthorship W2904103348A5078176055 @default.
- W2904103348 hasAuthorship W2904103348A5089002679 @default.
- W2904103348 hasConcept C121332964 @default.
- W2904103348 hasConcept C127413603 @default.
- W2904103348 hasConcept C1276947 @default.
- W2904103348 hasConcept C13662910 @default.
- W2904103348 hasConcept C154945302 @default.
- W2904103348 hasConcept C15744967 @default.
- W2904103348 hasConcept C19417346 @default.
- W2904103348 hasConcept C205649164 @default.
- W2904103348 hasConcept C22212356 @default.
- W2904103348 hasConcept C2775936607 @default.
- W2904103348 hasConcept C2777113093 @default.
- W2904103348 hasConcept C2777819797 @default.
- W2904103348 hasConcept C31972630 @default.
- W2904103348 hasConcept C41008148 @default.
- W2904103348 hasConcept C51399673 @default.
- W2904103348 hasConcept C62649853 @default.
- W2904103348 hasConceptScore W2904103348C121332964 @default.
- W2904103348 hasConceptScore W2904103348C127413603 @default.
- W2904103348 hasConceptScore W2904103348C1276947 @default.
- W2904103348 hasConceptScore W2904103348C13662910 @default.
- W2904103348 hasConceptScore W2904103348C154945302 @default.
- W2904103348 hasConceptScore W2904103348C15744967 @default.
- W2904103348 hasConceptScore W2904103348C19417346 @default.
- W2904103348 hasConceptScore W2904103348C205649164 @default.
- W2904103348 hasConceptScore W2904103348C22212356 @default.
- W2904103348 hasConceptScore W2904103348C2775936607 @default.
- W2904103348 hasConceptScore W2904103348C2777113093 @default.
- W2904103348 hasConceptScore W2904103348C2777819797 @default.
- W2904103348 hasConceptScore W2904103348C31972630 @default.
- W2904103348 hasConceptScore W2904103348C41008148 @default.
- W2904103348 hasConceptScore W2904103348C51399673 @default.
- W2904103348 hasConceptScore W2904103348C62649853 @default.
- W2904103348 hasFunder F4320315297 @default.
- W2904103348 hasIssue "5" @default.
- W2904103348 hasLocation W29041033481 @default.
- W2904103348 hasOpenAccess W2904103348 @default.
- W2904103348 hasPrimaryLocation W29041033481 @default.
- W2904103348 hasRelatedWork W1543936162 @default.
- W2904103348 hasRelatedWork W1971776229 @default.
- W2904103348 hasRelatedWork W2012137062 @default.
- W2904103348 hasRelatedWork W2364718445 @default.
- W2904103348 hasRelatedWork W2542256560 @default.
- W2904103348 hasRelatedWork W262545863 @default.
- W2904103348 hasRelatedWork W2973594161 @default.
- W2904103348 hasRelatedWork W3172487415 @default.
- W2904103348 hasRelatedWork W3185777255 @default.
- W2904103348 hasRelatedWork W644723666 @default.
- W2904103348 hasVolume "13" @default.
- W2904103348 isParatext "false" @default.
- W2904103348 isRetracted "false" @default.
- W2904103348 magId "2904103348" @default.
- W2904103348 workType "article" @default.