Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904117628> ?p ?o ?g. }
- W2904117628 endingPage "68" @default.
- W2904117628 startingPage "55" @default.
- W2904117628 abstract "Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be modelled as direct activation, inhibition, and self-regulatory interactions. The values of gene co-expressions could help in identifying co-regulations among them. The proposed approach aims at computing the differences in variances of co-expressed genes rather than computing differences in values of mean expressions across experimental conditions. It adopts multivariate co-variances using principal component analysis (PCA) to predict an asymmetric and non-diagonal gene interaction matrix, to select only those gene pair interactions that exhibit the maximum variances in gene regulatory expressions. The asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus lowering the false positive rate by minimizing the connections between previously unlinked network components. The experimental results on real as well as in silico datasets including time-series RTX therapy, Arabidopsis thaliana, DREAM-3, and DREAM-8 datasets, in comparison with existing state-of-the-art approaches demonstrated the enhanced performance of the proposed approach for predicting positive and negative feedback loops and self-regulatory interactions. The generated GRNs hold the potential in determining the real nature of gene pair regulatory interactions." @default.
- W2904117628 created "2018-12-22" @default.
- W2904117628 creator A5006794113 @default.
- W2904117628 creator A5016712783 @default.
- W2904117628 creator A5048720323 @default.
- W2904117628 creator A5060980511 @default.
- W2904117628 date "2019-04-01" @default.
- W2904117628 modified "2023-09-23" @default.
- W2904117628 title "Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data" @default.
- W2904117628 cites W1494052777 @default.
- W2904117628 cites W1966327575 @default.
- W2904117628 cites W1980276147 @default.
- W2904117628 cites W1982234117 @default.
- W2904117628 cites W1983686026 @default.
- W2904117628 cites W1985032743 @default.
- W2904117628 cites W1989371635 @default.
- W2904117628 cites W1992696908 @default.
- W2904117628 cites W1995815904 @default.
- W2904117628 cites W1995994824 @default.
- W2904117628 cites W2000921490 @default.
- W2904117628 cites W2006873092 @default.
- W2904117628 cites W2009914831 @default.
- W2904117628 cites W2012917093 @default.
- W2904117628 cites W2013048391 @default.
- W2904117628 cites W2022651241 @default.
- W2904117628 cites W2023348596 @default.
- W2904117628 cites W2029457550 @default.
- W2904117628 cites W2048707459 @default.
- W2904117628 cites W2050559302 @default.
- W2904117628 cites W2057545775 @default.
- W2904117628 cites W2059093945 @default.
- W2904117628 cites W2069928080 @default.
- W2904117628 cites W2091901410 @default.
- W2904117628 cites W2093017030 @default.
- W2904117628 cites W2095509444 @default.
- W2904117628 cites W2099449144 @default.
- W2904117628 cites W2101122984 @default.
- W2904117628 cites W2108025741 @default.
- W2904117628 cites W2110891968 @default.
- W2904117628 cites W2112215450 @default.
- W2904117628 cites W2118303980 @default.
- W2904117628 cites W2119042862 @default.
- W2904117628 cites W2120865735 @default.
- W2904117628 cites W2122708083 @default.
- W2904117628 cites W2123170032 @default.
- W2904117628 cites W2125631472 @default.
- W2904117628 cites W2128374508 @default.
- W2904117628 cites W2139689251 @default.
- W2904117628 cites W2140688829 @default.
- W2904117628 cites W2141871287 @default.
- W2904117628 cites W2147246240 @default.
- W2904117628 cites W2147948709 @default.
- W2904117628 cites W2149656802 @default.
- W2904117628 cites W2152295044 @default.
- W2904117628 cites W2157795344 @default.
- W2904117628 cites W2158706468 @default.
- W2904117628 cites W2159868152 @default.
- W2904117628 cites W2161868542 @default.
- W2904117628 cites W2162142896 @default.
- W2904117628 cites W2163296862 @default.
- W2904117628 cites W2167682467 @default.
- W2904117628 cites W2169950095 @default.
- W2904117628 cites W2190321267 @default.
- W2904117628 cites W2280966365 @default.
- W2904117628 cites W238668910 @default.
- W2904117628 cites W2402758503 @default.
- W2904117628 cites W2403526834 @default.
- W2904117628 cites W2419742121 @default.
- W2904117628 cites W2467831893 @default.
- W2904117628 cites W2501486123 @default.
- W2904117628 cites W2559743740 @default.
- W2904117628 cites W2576841927 @default.
- W2904117628 cites W2621109613 @default.
- W2904117628 cites W2726657838 @default.
- W2904117628 cites W3099289621 @default.
- W2904117628 cites W4294107304 @default.
- W2904117628 doi "https://doi.org/10.1049/iet-syb.2018.5001" @default.
- W2904117628 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33444479" @default.
- W2904117628 hasPublicationYear "2019" @default.
- W2904117628 type Work @default.
- W2904117628 sameAs 2904117628 @default.
- W2904117628 citedByCount "2" @default.
- W2904117628 countsByYear W29041176282019 @default.
- W2904117628 countsByYear W29041176282020 @default.
- W2904117628 crossrefType "journal-article" @default.
- W2904117628 hasAuthorship W2904117628A5006794113 @default.
- W2904117628 hasAuthorship W2904117628A5016712783 @default.
- W2904117628 hasAuthorship W2904117628A5048720323 @default.
- W2904117628 hasAuthorship W2904117628A5060980511 @default.
- W2904117628 hasBestOaLocation W29041176282 @default.
- W2904117628 hasConcept C104317684 @default.
- W2904117628 hasConcept C124101348 @default.
- W2904117628 hasConcept C150194340 @default.
- W2904117628 hasConcept C154945302 @default.
- W2904117628 hasConcept C165864922 @default.
- W2904117628 hasConcept C27438332 @default.
- W2904117628 hasConcept C2775905019 @default.
- W2904117628 hasConcept C2991772755 @default.