Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904118836> ?p ?o ?g. }
- W2904118836 endingPage "182" @default.
- W2904118836 startingPage "172" @default.
- W2904118836 abstract "This paper focuses on the capability of the evolutionary computation methods namely, genetic algorithm (GA) and particle swarm optimization (PSO) in design and optimizing the fuzzy c-means clustering (FCM) structure and their applications to predict the deformation modulus of rock masses. Accordingly, evolutionary algorithms are used to tune the pre-determined FCM clustering-based model to make better the accuracy of modulus estimation. A new empirical equation with the aid of multiple regression analysis is also suggested and on the basis of it a prediction chart is presented for determination of the rock mass deformation modulus. Finally, a comprehensive credibility assessment of the prediction performances of some existing empirical equations is done and the results are compared with that obtained by the evolutionary algorithms based FCM clustering models. It is concluded that the new proposed approaches provide more accurate results compared with the existing empirical equations." @default.
- W2904118836 created "2018-12-22" @default.
- W2904118836 creator A5021933283 @default.
- W2904118836 creator A5058659014 @default.
- W2904118836 date "2019-01-01" @default.
- W2904118836 modified "2023-10-02" @default.
- W2904118836 title "Applying evolutionary optimization algorithms for improving fuzzy C-mean clustering performance to predict the deformation modulus of rock mass" @default.
- W2904118836 cites W1480546881 @default.
- W2904118836 cites W1853840354 @default.
- W2904118836 cites W1971221856 @default.
- W2904118836 cites W1986918631 @default.
- W2904118836 cites W1988348522 @default.
- W2904118836 cites W1992147631 @default.
- W2904118836 cites W1996747841 @default.
- W2904118836 cites W1997913234 @default.
- W2904118836 cites W1999565652 @default.
- W2904118836 cites W2001686979 @default.
- W2904118836 cites W2004557065 @default.
- W2904118836 cites W2005350554 @default.
- W2904118836 cites W2006960330 @default.
- W2904118836 cites W2017101087 @default.
- W2904118836 cites W2018909738 @default.
- W2904118836 cites W2036013174 @default.
- W2904118836 cites W2043685122 @default.
- W2904118836 cites W2048628678 @default.
- W2904118836 cites W2051005367 @default.
- W2904118836 cites W2051068668 @default.
- W2904118836 cites W2053677366 @default.
- W2904118836 cites W2055728483 @default.
- W2904118836 cites W2065697996 @default.
- W2904118836 cites W2071686153 @default.
- W2904118836 cites W2076922305 @default.
- W2904118836 cites W2079543542 @default.
- W2904118836 cites W2080913375 @default.
- W2904118836 cites W2081445828 @default.
- W2904118836 cites W2085030517 @default.
- W2904118836 cites W2085798645 @default.
- W2904118836 cites W2085860939 @default.
- W2904118836 cites W2089775076 @default.
- W2904118836 cites W2094199595 @default.
- W2904118836 cites W2109364787 @default.
- W2904118836 cites W2121067334 @default.
- W2904118836 cites W2141074467 @default.
- W2904118836 cites W2152195021 @default.
- W2904118836 cites W2154867953 @default.
- W2904118836 cites W2187980362 @default.
- W2904118836 cites W2196243546 @default.
- W2904118836 cites W2914650623 @default.
- W2904118836 doi "https://doi.org/10.1016/j.ijrmms.2018.10.030" @default.
- W2904118836 hasPublicationYear "2019" @default.
- W2904118836 type Work @default.
- W2904118836 sameAs 2904118836 @default.
- W2904118836 citedByCount "22" @default.
- W2904118836 countsByYear W29041188362019 @default.
- W2904118836 countsByYear W29041188362020 @default.
- W2904118836 countsByYear W29041188362021 @default.
- W2904118836 countsByYear W29041188362022 @default.
- W2904118836 countsByYear W29041188362023 @default.
- W2904118836 crossrefType "journal-article" @default.
- W2904118836 hasAuthorship W2904118836A5021933283 @default.
- W2904118836 hasAuthorship W2904118836A5058659014 @default.
- W2904118836 hasConcept C105902424 @default.
- W2904118836 hasConcept C11413529 @default.
- W2904118836 hasConcept C119857082 @default.
- W2904118836 hasConcept C124101348 @default.
- W2904118836 hasConcept C126255220 @default.
- W2904118836 hasConcept C127413603 @default.
- W2904118836 hasConcept C154945302 @default.
- W2904118836 hasConcept C159149176 @default.
- W2904118836 hasConcept C17212007 @default.
- W2904118836 hasConcept C187320778 @default.
- W2904118836 hasConcept C33923547 @default.
- W2904118836 hasConcept C41008148 @default.
- W2904118836 hasConcept C41242791 @default.
- W2904118836 hasConcept C58166 @default.
- W2904118836 hasConcept C73555534 @default.
- W2904118836 hasConcept C85617194 @default.
- W2904118836 hasConcept C8880873 @default.
- W2904118836 hasConceptScore W2904118836C105902424 @default.
- W2904118836 hasConceptScore W2904118836C11413529 @default.
- W2904118836 hasConceptScore W2904118836C119857082 @default.
- W2904118836 hasConceptScore W2904118836C124101348 @default.
- W2904118836 hasConceptScore W2904118836C126255220 @default.
- W2904118836 hasConceptScore W2904118836C127413603 @default.
- W2904118836 hasConceptScore W2904118836C154945302 @default.
- W2904118836 hasConceptScore W2904118836C159149176 @default.
- W2904118836 hasConceptScore W2904118836C17212007 @default.
- W2904118836 hasConceptScore W2904118836C187320778 @default.
- W2904118836 hasConceptScore W2904118836C33923547 @default.
- W2904118836 hasConceptScore W2904118836C41008148 @default.
- W2904118836 hasConceptScore W2904118836C41242791 @default.
- W2904118836 hasConceptScore W2904118836C58166 @default.
- W2904118836 hasConceptScore W2904118836C73555534 @default.
- W2904118836 hasConceptScore W2904118836C85617194 @default.
- W2904118836 hasConceptScore W2904118836C8880873 @default.
- W2904118836 hasLocation W29041188361 @default.
- W2904118836 hasOpenAccess W2904118836 @default.
- W2904118836 hasPrimaryLocation W29041188361 @default.