Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904119718> ?p ?o ?g. }
- W2904119718 endingPage "740" @default.
- W2904119718 startingPage "730" @default.
- W2904119718 abstract "Bayesian optimization (BO) is proposed for automatic learning of optimal controller parameters from experimental data. A probabilistic description (a Gaussian process) is used to model the unknown function from controller parameters to a user-defined cost. The probabilistic model is updated with data, which is obtained by testing a set of parameters on the physical system and evaluating the cost. In order to learn fast, the BO algorithm selects the next parameters to evaluate in a systematic way, for example, by maximizing information gain about the optimum. The algorithm, thus, iteratively finds the globally optimal parameters with only few experiments. Taking throttle valve control as a representative industrial control example, the proposed autotuning method is shown to outperform manual calibration: it consistently achieves better performance with a low number of experiments. The proposed autotuning framework is flexible and can handle different control structures and objectives." @default.
- W2904119718 created "2018-12-22" @default.
- W2904119718 creator A5007221195 @default.
- W2904119718 creator A5014762489 @default.
- W2904119718 creator A5023990842 @default.
- W2904119718 creator A5079944627 @default.
- W2904119718 date "2020-05-01" @default.
- W2904119718 modified "2023-10-04" @default.
- W2904119718 title "Data-Efficient Autotuning With Bayesian Optimization: An Industrial Control Study" @default.
- W2904119718 cites W1510052597 @default.
- W2904119718 cites W1973320862 @default.
- W2904119718 cites W1976207411 @default.
- W2904119718 cites W1977655452 @default.
- W2904119718 cites W2018705428 @default.
- W2904119718 cites W2061144551 @default.
- W2904119718 cites W2064343721 @default.
- W2904119718 cites W2065509522 @default.
- W2904119718 cites W2075577126 @default.
- W2904119718 cites W2078609652 @default.
- W2904119718 cites W2087050671 @default.
- W2904119718 cites W2108380954 @default.
- W2904119718 cites W2132875296 @default.
- W2904119718 cites W2136638407 @default.
- W2904119718 cites W2143277772 @default.
- W2904119718 cites W2151083101 @default.
- W2904119718 cites W2192203593 @default.
- W2904119718 cites W2499948779 @default.
- W2904119718 cites W2592857946 @default.
- W2904119718 cites W2758399700 @default.
- W2904119718 cites W2891993609 @default.
- W2904119718 cites W2963786176 @default.
- W2904119718 cites W3105904426 @default.
- W2904119718 cites W4292904866 @default.
- W2904119718 cites W58266590 @default.
- W2904119718 cites W770013183 @default.
- W2904119718 doi "https://doi.org/10.1109/tcst.2018.2886159" @default.
- W2904119718 hasPublicationYear "2020" @default.
- W2904119718 type Work @default.
- W2904119718 sameAs 2904119718 @default.
- W2904119718 citedByCount "43" @default.
- W2904119718 countsByYear W29041197182020 @default.
- W2904119718 countsByYear W29041197182021 @default.
- W2904119718 countsByYear W29041197182022 @default.
- W2904119718 countsByYear W29041197182023 @default.
- W2904119718 crossrefType "journal-article" @default.
- W2904119718 hasAuthorship W2904119718A5007221195 @default.
- W2904119718 hasAuthorship W2904119718A5014762489 @default.
- W2904119718 hasAuthorship W2904119718A5023990842 @default.
- W2904119718 hasAuthorship W2904119718A5079944627 @default.
- W2904119718 hasBestOaLocation W29041197182 @default.
- W2904119718 hasConcept C107673813 @default.
- W2904119718 hasConcept C111919701 @default.
- W2904119718 hasConcept C119857082 @default.
- W2904119718 hasConcept C121332964 @default.
- W2904119718 hasConcept C126255220 @default.
- W2904119718 hasConcept C127413603 @default.
- W2904119718 hasConcept C154945302 @default.
- W2904119718 hasConcept C163716315 @default.
- W2904119718 hasConcept C171146098 @default.
- W2904119718 hasConcept C177264268 @default.
- W2904119718 hasConcept C199360897 @default.
- W2904119718 hasConcept C203479927 @default.
- W2904119718 hasConcept C2778049539 @default.
- W2904119718 hasConcept C33923547 @default.
- W2904119718 hasConcept C41008148 @default.
- W2904119718 hasConcept C49937458 @default.
- W2904119718 hasConcept C61326573 @default.
- W2904119718 hasConcept C62520636 @default.
- W2904119718 hasConcept C6557445 @default.
- W2904119718 hasConcept C72971556 @default.
- W2904119718 hasConcept C86803240 @default.
- W2904119718 hasConcept C98045186 @default.
- W2904119718 hasConceptScore W2904119718C107673813 @default.
- W2904119718 hasConceptScore W2904119718C111919701 @default.
- W2904119718 hasConceptScore W2904119718C119857082 @default.
- W2904119718 hasConceptScore W2904119718C121332964 @default.
- W2904119718 hasConceptScore W2904119718C126255220 @default.
- W2904119718 hasConceptScore W2904119718C127413603 @default.
- W2904119718 hasConceptScore W2904119718C154945302 @default.
- W2904119718 hasConceptScore W2904119718C163716315 @default.
- W2904119718 hasConceptScore W2904119718C171146098 @default.
- W2904119718 hasConceptScore W2904119718C177264268 @default.
- W2904119718 hasConceptScore W2904119718C199360897 @default.
- W2904119718 hasConceptScore W2904119718C203479927 @default.
- W2904119718 hasConceptScore W2904119718C2778049539 @default.
- W2904119718 hasConceptScore W2904119718C33923547 @default.
- W2904119718 hasConceptScore W2904119718C41008148 @default.
- W2904119718 hasConceptScore W2904119718C49937458 @default.
- W2904119718 hasConceptScore W2904119718C61326573 @default.
- W2904119718 hasConceptScore W2904119718C62520636 @default.
- W2904119718 hasConceptScore W2904119718C6557445 @default.
- W2904119718 hasConceptScore W2904119718C72971556 @default.
- W2904119718 hasConceptScore W2904119718C86803240 @default.
- W2904119718 hasConceptScore W2904119718C98045186 @default.
- W2904119718 hasFunder F4320322434 @default.
- W2904119718 hasIssue "3" @default.
- W2904119718 hasLocation W29041197181 @default.
- W2904119718 hasLocation W29041197182 @default.