Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904132499> ?p ?o ?g. }
- W2904132499 endingPage "e0208433" @default.
- W2904132499 startingPage "e0208433" @default.
- W2904132499 abstract "Ordinal categorical responses are frequently collected in survey studies, human medicine, and animal and plant improvement programs, just to mention a few. Errors in this type of data are neither rare nor easy to detect. These errors tend to bias the inference, reduce the statistical power and ultimately the efficiency of the decision-making process. Contrarily to the binary situation where misclassification occurs between two response classes, noise in ordinal categorical data is more complex due to the increased number of categories, diversity and asymmetry of errors. Although several approaches have been presented for dealing with misclassification in binary data, only limited practical methods have been proposed to analyze noisy categorical responses. A latent variable model implemented within a Bayesian framework was proposed to analyze ordinal categorical data subject to misclassification using simulated and real datasets. The simulated scenario consisted of a discrete response with three categories and a symmetric error rate of 5% between any two classes. The real data consisted of calving ease records of beef cows. Using real and simulated data, ignoring misclassification resulted in substantial bias in the estimation of genetic parameters and reduction of the accuracy of predicted breeding values. Using our proposed approach, a significant reduction in bias and increase in accuracy ranging from 11% to 17% was observed. Furthermore, most of the misclassified observations (in the simulated data) were identified with a substantially higher probability. Similar results were observed for a scenario with asymmetric misclassification. While the extension to traits with more categories between adjacent classes is straightforward, it could be computationally costly. For traits with high heritability, the performance of the methodology would be expected to improve." @default.
- W2904132499 created "2018-12-22" @default.
- W2904132499 creator A5023046189 @default.
- W2904132499 creator A5065258172 @default.
- W2904132499 creator A5085100684 @default.
- W2904132499 creator A5090838027 @default.
- W2904132499 date "2018-12-13" @default.
- W2904132499 modified "2023-09-26" @default.
- W2904132499 title "A Bayesian approach for analysis of ordered categorical responses subject to misclassification" @default.
- W2904132499 cites W1962428819 @default.
- W2904132499 cites W1964427735 @default.
- W2904132499 cites W1983436690 @default.
- W2904132499 cites W1984046516 @default.
- W2904132499 cites W1985672878 @default.
- W2904132499 cites W1989747332 @default.
- W2904132499 cites W1992627971 @default.
- W2904132499 cites W2008100245 @default.
- W2904132499 cites W2010482547 @default.
- W2904132499 cites W2014651914 @default.
- W2904132499 cites W2015918180 @default.
- W2904132499 cites W2020402561 @default.
- W2904132499 cites W2034841618 @default.
- W2904132499 cites W2035945730 @default.
- W2904132499 cites W2038279432 @default.
- W2904132499 cites W2045102602 @default.
- W2904132499 cites W2057800162 @default.
- W2904132499 cites W2061762129 @default.
- W2904132499 cites W2064203053 @default.
- W2904132499 cites W2068376489 @default.
- W2904132499 cites W2073599017 @default.
- W2904132499 cites W2084222609 @default.
- W2904132499 cites W2090727755 @default.
- W2904132499 cites W2096035548 @default.
- W2904132499 cites W2114060717 @default.
- W2904132499 cites W2116877194 @default.
- W2904132499 cites W2118591763 @default.
- W2904132499 cites W2142153593 @default.
- W2904132499 cites W2149569695 @default.
- W2904132499 cites W2156709054 @default.
- W2904132499 cites W2161683170 @default.
- W2904132499 cites W2169986699 @default.
- W2904132499 cites W2198283839 @default.
- W2904132499 cites W2320240088 @default.
- W2904132499 cites W2331453745 @default.
- W2904132499 cites W2407158253 @default.
- W2904132499 cites W2434933360 @default.
- W2904132499 cites W2559031640 @default.
- W2904132499 cites W2751468770 @default.
- W2904132499 cites W4252605513 @default.
- W2904132499 doi "https://doi.org/10.1371/journal.pone.0208433" @default.
- W2904132499 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6292639" @default.
- W2904132499 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30543662" @default.
- W2904132499 hasPublicationYear "2018" @default.
- W2904132499 type Work @default.
- W2904132499 sameAs 2904132499 @default.
- W2904132499 citedByCount "2" @default.
- W2904132499 countsByYear W29041324992023 @default.
- W2904132499 crossrefType "journal-article" @default.
- W2904132499 hasAuthorship W2904132499A5023046189 @default.
- W2904132499 hasAuthorship W2904132499A5065258172 @default.
- W2904132499 hasAuthorship W2904132499A5085100684 @default.
- W2904132499 hasAuthorship W2904132499A5090838027 @default.
- W2904132499 hasBestOaLocation W29041324991 @default.
- W2904132499 hasConcept C105795698 @default.
- W2904132499 hasConcept C107673813 @default.
- W2904132499 hasConcept C119857082 @default.
- W2904132499 hasConcept C124101348 @default.
- W2904132499 hasConcept C153180895 @default.
- W2904132499 hasConcept C154945302 @default.
- W2904132499 hasConcept C2776214188 @default.
- W2904132499 hasConcept C2779190172 @default.
- W2904132499 hasConcept C33923547 @default.
- W2904132499 hasConcept C40696583 @default.
- W2904132499 hasConcept C41008148 @default.
- W2904132499 hasConcept C48372109 @default.
- W2904132499 hasConcept C5274069 @default.
- W2904132499 hasConcept C85461838 @default.
- W2904132499 hasConcept C94375191 @default.
- W2904132499 hasConcept C96608239 @default.
- W2904132499 hasConceptScore W2904132499C105795698 @default.
- W2904132499 hasConceptScore W2904132499C107673813 @default.
- W2904132499 hasConceptScore W2904132499C119857082 @default.
- W2904132499 hasConceptScore W2904132499C124101348 @default.
- W2904132499 hasConceptScore W2904132499C153180895 @default.
- W2904132499 hasConceptScore W2904132499C154945302 @default.
- W2904132499 hasConceptScore W2904132499C2776214188 @default.
- W2904132499 hasConceptScore W2904132499C2779190172 @default.
- W2904132499 hasConceptScore W2904132499C33923547 @default.
- W2904132499 hasConceptScore W2904132499C40696583 @default.
- W2904132499 hasConceptScore W2904132499C41008148 @default.
- W2904132499 hasConceptScore W2904132499C48372109 @default.
- W2904132499 hasConceptScore W2904132499C5274069 @default.
- W2904132499 hasConceptScore W2904132499C85461838 @default.
- W2904132499 hasConceptScore W2904132499C94375191 @default.
- W2904132499 hasConceptScore W2904132499C96608239 @default.
- W2904132499 hasFunder F4320332299 @default.
- W2904132499 hasIssue "12" @default.
- W2904132499 hasLocation W29041324991 @default.