Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904141086> ?p ?o ?g. }
- W2904141086 endingPage "45" @default.
- W2904141086 startingPage "38" @default.
- W2904141086 abstract "We present an optimized implementation of the recently proposed symmetric gradient domain machine learning (sGDML) model. The sGDML model is able to faithfully reproduce global potential energy surfaces (PES) for molecules with a few dozen atoms from a limited number of user-provided reference molecular conformations and the associated atomic forces. Here, we introduce a Python software package to reconstruct and evaluate custom sGDML force fields (FFs), without requiring in-depth knowledge about the details of the model. A user-friendly command-line interface offers assistance through the complete process of model creation, in an effort to make this novel machine learning approach accessible to broad practitioners. Our paper serves as a documentation, but also includes a practical application example of how to reconstruct and use a PBE0+MBD FF for paracetamol. Finally, we show how to interface sGDML with the FF simulation engines ASE (Larsen et al., 2017) and i-PI (Kapil et al., 2019) to run numerical experiments, including structure optimization, classical and path integral molecular dynamics and nudged elastic band calculations." @default.
- W2904141086 created "2018-12-22" @default.
- W2904141086 creator A5020705170 @default.
- W2904141086 creator A5026929463 @default.
- W2904141086 creator A5069777955 @default.
- W2904141086 creator A5075988802 @default.
- W2904141086 creator A5082698816 @default.
- W2904141086 date "2019-07-01" @default.
- W2904141086 modified "2023-10-18" @default.
- W2904141086 title "sGDML: Constructing accurate and data efficient molecular force fields using machine learning" @default.
- W2904141086 cites W1531674615 @default.
- W2904141086 cites W1816466342 @default.
- W2904141086 cites W1843396089 @default.
- W2904141086 cites W1972399880 @default.
- W2904141086 cites W1978183953 @default.
- W2904141086 cites W1998260904 @default.
- W2904141086 cites W2016612689 @default.
- W2904141086 cites W2025444507 @default.
- W2904141086 cites W2029413789 @default.
- W2904141086 cites W2030057222 @default.
- W2904141086 cites W2057858097 @default.
- W2904141086 cites W2083415705 @default.
- W2904141086 cites W2104489082 @default.
- W2904141086 cites W2108182844 @default.
- W2904141086 cites W2108995755 @default.
- W2904141086 cites W2132262459 @default.
- W2904141086 cites W2171268876 @default.
- W2904141086 cites W2225949634 @default.
- W2904141086 cites W2337496963 @default.
- W2904141086 cites W2527189750 @default.
- W2904141086 cites W2547447472 @default.
- W2904141086 cites W2558395406 @default.
- W2904141086 cites W2566573083 @default.
- W2904141086 cites W2585152223 @default.
- W2904141086 cites W2601081289 @default.
- W2904141086 cites W2620687153 @default.
- W2904141086 cites W2650911154 @default.
- W2904141086 cites W2725390203 @default.
- W2904141086 cites W2730802076 @default.
- W2904141086 cites W2742127985 @default.
- W2904141086 cites W2749006386 @default.
- W2904141086 cites W2753962198 @default.
- W2904141086 cites W2755837508 @default.
- W2904141086 cites W2757878424 @default.
- W2904141086 cites W2764158037 @default.
- W2904141086 cites W2768213699 @default.
- W2904141086 cites W2778051509 @default.
- W2904141086 cites W2782772320 @default.
- W2904141086 cites W2798718650 @default.
- W2904141086 cites W2800440295 @default.
- W2904141086 cites W2810026216 @default.
- W2904141086 cites W2891365537 @default.
- W2904141086 cites W2901995873 @default.
- W2904141086 cites W2964268718 @default.
- W2904141086 cites W2972246420 @default.
- W2904141086 cites W3099005864 @default.
- W2904141086 cites W3099423575 @default.
- W2904141086 cites W3099813870 @default.
- W2904141086 cites W3099950071 @default.
- W2904141086 cites W3101643101 @default.
- W2904141086 cites W3102448310 @default.
- W2904141086 cites W3102449990 @default.
- W2904141086 cites W3103144868 @default.
- W2904141086 cites W3106310231 @default.
- W2904141086 doi "https://doi.org/10.1016/j.cpc.2019.02.007" @default.
- W2904141086 hasPublicationYear "2019" @default.
- W2904141086 type Work @default.
- W2904141086 sameAs 2904141086 @default.
- W2904141086 citedByCount "128" @default.
- W2904141086 countsByYear W29041410862019 @default.
- W2904141086 countsByYear W29041410862020 @default.
- W2904141086 countsByYear W29041410862021 @default.
- W2904141086 countsByYear W29041410862022 @default.
- W2904141086 countsByYear W29041410862023 @default.
- W2904141086 crossrefType "journal-article" @default.
- W2904141086 hasAuthorship W2904141086A5020705170 @default.
- W2904141086 hasAuthorship W2904141086A5026929463 @default.
- W2904141086 hasAuthorship W2904141086A5069777955 @default.
- W2904141086 hasAuthorship W2904141086A5075988802 @default.
- W2904141086 hasAuthorship W2904141086A5082698816 @default.
- W2904141086 hasBestOaLocation W29041410861 @default.
- W2904141086 hasConcept C10803110 @default.
- W2904141086 hasConcept C113843644 @default.
- W2904141086 hasConcept C11413529 @default.
- W2904141086 hasConcept C121332964 @default.
- W2904141086 hasConcept C129307140 @default.
- W2904141086 hasConcept C14961307 @default.
- W2904141086 hasConcept C154945302 @default.
- W2904141086 hasConcept C157915830 @default.
- W2904141086 hasConcept C173608175 @default.
- W2904141086 hasConcept C199360897 @default.
- W2904141086 hasConcept C2777735758 @default.
- W2904141086 hasConcept C2777904410 @default.
- W2904141086 hasConcept C37789001 @default.
- W2904141086 hasConcept C41008148 @default.
- W2904141086 hasConcept C459310 @default.
- W2904141086 hasConcept C519991488 @default.
- W2904141086 hasConcept C56666940 @default.