Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904143498> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2904143498 abstract "This paper proposes a method by using Convolutional Neural Network (CNN), which reduces the image classification time and maintains the classification performance above an acceptable threshold. A hybrid model called Discrete Wavelet Transform Singular Value Decomposition based Perceptual Hash Convolutional Neural Network (DWT-SVD-PH-CNN) is proposed by using a perceptual hash function together with CNN to reduce the classification time. In the proposed method, the DWT-SVD- based perceptual hash function is used. The most important feature of perceptual hash functions is to obtain the salient features of images. First, DWT-SVD based perceptual hash function is applied to images for obtaining salient features. Then, images making up of salient features, are produced in 32 x 32 format and given as inputs to CNN, where Support Vector Machine (SVM) is used to classify the images. In this paper, the DWT-SVD-PH-CNN method is applied to Caltech 101 image database. Experimental results show that the proposed DWT-SVD-PH-CNN method has a high accuracy, about 95.8 %. Moreover, this method reduces the execution time from 241.21 seconds to 83.08 seconds compared to the classical method. Thus, the experimental results show that the proposed DWT-SVD-PH-CNN method performs much faster than classical CNN by maintaining the image classification accuracy high." @default.
- W2904143498 created "2018-12-22" @default.
- W2904143498 creator A5002423094 @default.
- W2904143498 creator A5003301865 @default.
- W2904143498 creator A5066635935 @default.
- W2904143498 creator A5070904845 @default.
- W2904143498 date "2018-09-01" @default.
- W2904143498 modified "2023-09-27" @default.
- W2904143498 title "A New Method for Classification of Images Using Convolutional Neural Network Based on Dwt-Svd Perceptual Hash Function" @default.
- W2904143498 cites W1498063722 @default.
- W2904143498 cites W1559535184 @default.
- W2904143498 cites W1969840923 @default.
- W2904143498 cites W197865394 @default.
- W2904143498 cites W1984723527 @default.
- W2904143498 cites W1994906459 @default.
- W2904143498 cites W1999113165 @default.
- W2904143498 cites W2072072671 @default.
- W2904143498 cites W2076063813 @default.
- W2904143498 cites W2100495367 @default.
- W2904143498 cites W2112796928 @default.
- W2904143498 cites W2134557905 @default.
- W2904143498 cites W2136922672 @default.
- W2904143498 cites W2151103935 @default.
- W2904143498 cites W2163352848 @default.
- W2904143498 cites W2163922914 @default.
- W2904143498 cites W2176950688 @default.
- W2904143498 cites W2186155590 @default.
- W2904143498 cites W2344073393 @default.
- W2904143498 cites W2507989420 @default.
- W2904143498 cites W2919115771 @default.
- W2904143498 cites W3102431071 @default.
- W2904143498 cites W4231109964 @default.
- W2904143498 cites W2010267114 @default.
- W2904143498 doi "https://doi.org/10.1109/ubmk.2018.8566537" @default.
- W2904143498 hasPublicationYear "2018" @default.
- W2904143498 type Work @default.
- W2904143498 sameAs 2904143498 @default.
- W2904143498 citedByCount "4" @default.
- W2904143498 countsByYear W29041434982020 @default.
- W2904143498 countsByYear W29041434982021 @default.
- W2904143498 countsByYear W29041434982023 @default.
- W2904143498 crossrefType "proceedings-article" @default.
- W2904143498 hasAuthorship W2904143498A5002423094 @default.
- W2904143498 hasAuthorship W2904143498A5003301865 @default.
- W2904143498 hasAuthorship W2904143498A5066635935 @default.
- W2904143498 hasAuthorship W2904143498A5070904845 @default.
- W2904143498 hasConcept C133667856 @default.
- W2904143498 hasConcept C138111711 @default.
- W2904143498 hasConcept C153180895 @default.
- W2904143498 hasConcept C154945302 @default.
- W2904143498 hasConcept C196216189 @default.
- W2904143498 hasConcept C22789450 @default.
- W2904143498 hasConcept C38652104 @default.
- W2904143498 hasConcept C41008148 @default.
- W2904143498 hasConcept C46286280 @default.
- W2904143498 hasConcept C47432892 @default.
- W2904143498 hasConcept C7608002 @default.
- W2904143498 hasConcept C81363708 @default.
- W2904143498 hasConcept C99138194 @default.
- W2904143498 hasConceptScore W2904143498C133667856 @default.
- W2904143498 hasConceptScore W2904143498C138111711 @default.
- W2904143498 hasConceptScore W2904143498C153180895 @default.
- W2904143498 hasConceptScore W2904143498C154945302 @default.
- W2904143498 hasConceptScore W2904143498C196216189 @default.
- W2904143498 hasConceptScore W2904143498C22789450 @default.
- W2904143498 hasConceptScore W2904143498C38652104 @default.
- W2904143498 hasConceptScore W2904143498C41008148 @default.
- W2904143498 hasConceptScore W2904143498C46286280 @default.
- W2904143498 hasConceptScore W2904143498C47432892 @default.
- W2904143498 hasConceptScore W2904143498C7608002 @default.
- W2904143498 hasConceptScore W2904143498C81363708 @default.
- W2904143498 hasConceptScore W2904143498C99138194 @default.
- W2904143498 hasLocation W29041434981 @default.
- W2904143498 hasOpenAccess W2904143498 @default.
- W2904143498 hasPrimaryLocation W29041434981 @default.
- W2904143498 hasRelatedWork W2175746458 @default.
- W2904143498 hasRelatedWork W2349565792 @default.
- W2904143498 hasRelatedWork W2732542196 @default.
- W2904143498 hasRelatedWork W2738221750 @default.
- W2904143498 hasRelatedWork W2760085659 @default.
- W2904143498 hasRelatedWork W2883200793 @default.
- W2904143498 hasRelatedWork W3093612317 @default.
- W2904143498 hasRelatedWork W3189237734 @default.
- W2904143498 hasRelatedWork W3203086531 @default.
- W2904143498 hasRelatedWork W3203501097 @default.
- W2904143498 isParatext "false" @default.
- W2904143498 isRetracted "false" @default.
- W2904143498 magId "2904143498" @default.
- W2904143498 workType "article" @default.