Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904160178> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2904160178 abstract "Point cloud is a collection of 3D coordinates that are discrete geometric samples of an object's 2D surfaces. Imperfection in the acquisition process means that point clouds are often corrupted with noise. Building on recent advances in graph signal processing, we design local algorithms for 3D point cloud denoising. Specifically, we design a reweighted graph Laplacian regularizer (RGLR) for surface normals and demonstrate its merits in rotation invariance, promotion of piecewise smoothness, and ease of optimization. Using RGLR as a signal prior, we formulate an optimization problem with a general lp-norm fidelity term that can explicitly model two types of independent noise: small but non-sparse noise (using l2 fidelity term) and large but sparser noise (using l1 fidelity term). To establish a linear relationship between normals and 3D point coordinates, we first perform bipartite graph approximation to divide the point cloud into two disjoint node sets (red and blue). We then optimize the red and blue nodes' coordinates alternately. For l2-norm fidelity term, we iteratively solve an unconstrained quadratic programming (QP) problem, efficiently computed using conjugate gradient with a bounded condition number to ensure numerical stability. For l1-norm fidelity term, we iteratively minimize an l1-l2 cost function sing accelerated proximal gradient (APG), where a good step size is chosen via Lipschitz continuity analysis. Finally, we propose simple mean and median filters for flat patches of a given point cloud to estimate the noise variance given the noise type, which in turn is used to compute a weight parameter trading off the fidelity term and signal prior in the problem formulation. Extensive experiments show state-of-the-art denoising performance among local methods using our proposed algorithms." @default.
- W2904160178 created "2018-12-22" @default.
- W2904160178 creator A5010633798 @default.
- W2904160178 creator A5012187461 @default.
- W2904160178 creator A5038897476 @default.
- W2904160178 date "2018-12-19" @default.
- W2904160178 modified "2023-09-27" @default.
- W2904160178 title "3D Point Cloud Denoising via Bipartite Graph Approximation and Reweighted Graph Laplacian" @default.
- W2904160178 cites W1540550726 @default.
- W2904160178 cites W2017522696 @default.
- W2904160178 cites W2070433376 @default.
- W2904160178 cites W2098841537 @default.
- W2904160178 cites W2571662414 @default.
- W2904160178 cites W2623075562 @default.
- W2904160178 cites W2739744923 @default.
- W2904160178 cites W2783991429 @default.
- W2904160178 cites W2913535645 @default.
- W2904160178 hasPublicationYear "2018" @default.
- W2904160178 type Work @default.
- W2904160178 sameAs 2904160178 @default.
- W2904160178 citedByCount "4" @default.
- W2904160178 countsByYear W29041601782019 @default.
- W2904160178 countsByYear W29041601782020 @default.
- W2904160178 countsByYear W29041601782021 @default.
- W2904160178 crossrefType "posted-content" @default.
- W2904160178 hasAuthorship W2904160178A5010633798 @default.
- W2904160178 hasAuthorship W2904160178A5012187461 @default.
- W2904160178 hasAuthorship W2904160178A5038897476 @default.
- W2904160178 hasConcept C11413529 @default.
- W2904160178 hasConcept C126255220 @default.
- W2904160178 hasConcept C131979681 @default.
- W2904160178 hasConcept C153258448 @default.
- W2904160178 hasConcept C154945302 @default.
- W2904160178 hasConcept C163294075 @default.
- W2904160178 hasConcept C33923547 @default.
- W2904160178 hasConcept C41008148 @default.
- W2904160178 hasConcept C50644808 @default.
- W2904160178 hasConceptScore W2904160178C11413529 @default.
- W2904160178 hasConceptScore W2904160178C126255220 @default.
- W2904160178 hasConceptScore W2904160178C131979681 @default.
- W2904160178 hasConceptScore W2904160178C153258448 @default.
- W2904160178 hasConceptScore W2904160178C154945302 @default.
- W2904160178 hasConceptScore W2904160178C163294075 @default.
- W2904160178 hasConceptScore W2904160178C33923547 @default.
- W2904160178 hasConceptScore W2904160178C41008148 @default.
- W2904160178 hasConceptScore W2904160178C50644808 @default.
- W2904160178 hasLocation W29041601781 @default.
- W2904160178 hasOpenAccess W2904160178 @default.
- W2904160178 hasPrimaryLocation W29041601781 @default.
- W2904160178 hasRelatedWork W156975732 @default.
- W2904160178 hasRelatedWork W1578099820 @default.
- W2904160178 hasRelatedWork W1987113397 @default.
- W2904160178 hasRelatedWork W1988317275 @default.
- W2904160178 hasRelatedWork W2000081328 @default.
- W2904160178 hasRelatedWork W2004402003 @default.
- W2904160178 hasRelatedWork W2010473040 @default.
- W2904160178 hasRelatedWork W2056370875 @default.
- W2904160178 hasRelatedWork W2081194966 @default.
- W2904160178 hasRelatedWork W2101491865 @default.
- W2904160178 hasRelatedWork W2137531922 @default.
- W2904160178 hasRelatedWork W2169611956 @default.
- W2904160178 hasRelatedWork W2546714150 @default.
- W2904160178 hasRelatedWork W2560609797 @default.
- W2904160178 hasRelatedWork W2571662414 @default.
- W2904160178 hasRelatedWork W2906788812 @default.
- W2904160178 hasRelatedWork W2963756602 @default.
- W2904160178 hasRelatedWork W2998456637 @default.
- W2904160178 hasRelatedWork W3102733014 @default.
- W2904160178 hasRelatedWork W3106135392 @default.
- W2904160178 isParatext "false" @default.
- W2904160178 isRetracted "false" @default.
- W2904160178 magId "2904160178" @default.
- W2904160178 workType "article" @default.