Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904162140> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2904162140 endingPage "39" @default.
- W2904162140 startingPage "33" @default.
- W2904162140 abstract "Introduction. Brain electrical activity signals (or EEG) by their very nature are non-stationary time series. This basically allows applying a set of mathematical-statistical analysis methods to them. One of the most common methods for signal analyzing is the construction of autoregressive mathematical models and analysis of their parameters in order to obtain additional information about the signal itself or causality between signals. In multivariate autoregressive (MVAR) modeling of EEG, the main issue is the optimal choice of model order. In this work, the approach for selecting the optimal order of MVAR models of brain electrical activity signals of subjects diagnosed with epilepsy is proposed. MVAR modeling. The autoregressive model assumes that the current sample of the discrete signal can be linearly predicted as a weighted sum of its previous samples. MVAR model extends this assumption to multiple time series so that the vector of current samples of all signals is modeled as a linear sum of their previous samples. MVAR models of EEG signals essentially are formed by solving systems of linear equations. The Yule-Walker method of linear equations systems solving is used in this paper. The accuracy of EEG modeling depends on the order of model. Each model order influenced by the amount of delay between current samples and last previous samples used to generate the model. To assess the order and quality of models the Schwarz-Bayes information criterion (SBC) is used in this work taking into account the covariance matrix of the residuals. Additionally, the quality is assessed by Pearson's correlation coefficient between the real and simulated data. In this paper, the MVAR modeling and statistical analysis of the models' optimal orders of the input signal periods before, during and after an epileptic seizure is carried out. Experimental results. Two sets of EEG data with generalized and focal epileptic seizures are used. The first group of patients with focal seizures consists of 26 people and more than 100 epileptic seizures. The second group with generalized seizures consists of 11 people and about 50 epileptic seizures. For EEG signals modeling, values of orders in a range from 1 to 22 are used. Consequently, for each investigated period of signal (before, during and after a seizure), 22 different MVAR models are constructed and compared. After modeling, the obtained models for each order value are evaluated using the SBC criterion. Conclusions. According to the results, it is recommended to choose the order of MVAR models of EEG signals in the predefined range of orders from 11 to 13. Since the sampling rate of the signals used in these experiments is 250 Hz, the specified range of order values indicates that MVAR-modelling of one signal includes information that contains all other signals with a delay of 44-52 ms. Therefore, theoretically, it is possible to allocate functional characteristics of brain electrical activity for patients with epilepsy that occur synchronously in different parts of the brain and spread at an average of 50 ms. Moreover, the ways of further research of electrical brain activity and functional connections of brain regions during epileptic activity are indicated." @default.
- W2904162140 created "2018-12-22" @default.
- W2904162140 creator A5003065559 @default.
- W2904162140 creator A5031665140 @default.
- W2904162140 creator A5048694866 @default.
- W2904162140 date "2018-06-30" @default.
- W2904162140 modified "2023-09-25" @default.
- W2904162140 title "Selection of the optimal order for multivariate autoregressive model of electroencephalograms for patients with epilepsy" @default.
- W2904162140 cites W1968371014 @default.
- W2904162140 cites W1997804262 @default.
- W2904162140 cites W2019448438 @default.
- W2904162140 cites W2080971114 @default.
- W2904162140 cites W2126455177 @default.
- W2904162140 cites W2162421089 @default.
- W2904162140 cites W2756966456 @default.
- W2904162140 cites W2947626232 @default.
- W2904162140 cites W3117312638 @default.
- W2904162140 cites W88343667 @default.
- W2904162140 doi "https://doi.org/10.20535/radap.2018.73.33-39" @default.
- W2904162140 hasPublicationYear "2018" @default.
- W2904162140 type Work @default.
- W2904162140 sameAs 2904162140 @default.
- W2904162140 citedByCount "1" @default.
- W2904162140 countsByYear W29041621402021 @default.
- W2904162140 crossrefType "journal-article" @default.
- W2904162140 hasAuthorship W2904162140A5003065559 @default.
- W2904162140 hasAuthorship W2904162140A5031665140 @default.
- W2904162140 hasAuthorship W2904162140A5048694866 @default.
- W2904162140 hasBestOaLocation W29041621401 @default.
- W2904162140 hasConcept C105795698 @default.
- W2904162140 hasConcept C108755667 @default.
- W2904162140 hasConcept C118552586 @default.
- W2904162140 hasConcept C121332964 @default.
- W2904162140 hasConcept C15744967 @default.
- W2904162140 hasConcept C159877910 @default.
- W2904162140 hasConcept C163175372 @default.
- W2904162140 hasConcept C163258240 @default.
- W2904162140 hasConcept C178650346 @default.
- W2904162140 hasConcept C33923547 @default.
- W2904162140 hasConcept C41008148 @default.
- W2904162140 hasConcept C522805319 @default.
- W2904162140 hasConcept C62520636 @default.
- W2904162140 hasConcept C93959086 @default.
- W2904162140 hasConceptScore W2904162140C105795698 @default.
- W2904162140 hasConceptScore W2904162140C108755667 @default.
- W2904162140 hasConceptScore W2904162140C118552586 @default.
- W2904162140 hasConceptScore W2904162140C121332964 @default.
- W2904162140 hasConceptScore W2904162140C15744967 @default.
- W2904162140 hasConceptScore W2904162140C159877910 @default.
- W2904162140 hasConceptScore W2904162140C163175372 @default.
- W2904162140 hasConceptScore W2904162140C163258240 @default.
- W2904162140 hasConceptScore W2904162140C178650346 @default.
- W2904162140 hasConceptScore W2904162140C33923547 @default.
- W2904162140 hasConceptScore W2904162140C41008148 @default.
- W2904162140 hasConceptScore W2904162140C522805319 @default.
- W2904162140 hasConceptScore W2904162140C62520636 @default.
- W2904162140 hasConceptScore W2904162140C93959086 @default.
- W2904162140 hasIssue "73" @default.
- W2904162140 hasLocation W29041621401 @default.
- W2904162140 hasLocation W29041621402 @default.
- W2904162140 hasOpenAccess W2904162140 @default.
- W2904162140 hasPrimaryLocation W29041621401 @default.
- W2904162140 hasRelatedWork W2123715154 @default.
- W2904162140 hasRelatedWork W2125663054 @default.
- W2904162140 hasRelatedWork W2141907517 @default.
- W2904162140 hasRelatedWork W2145556071 @default.
- W2904162140 hasRelatedWork W2158619494 @default.
- W2904162140 hasRelatedWork W2391813531 @default.
- W2904162140 hasRelatedWork W2548845607 @default.
- W2904162140 hasRelatedWork W3033038701 @default.
- W2904162140 hasRelatedWork W3124710031 @default.
- W2904162140 hasRelatedWork W4283170802 @default.
- W2904162140 hasVolume "0" @default.
- W2904162140 isParatext "false" @default.
- W2904162140 isRetracted "false" @default.
- W2904162140 magId "2904162140" @default.
- W2904162140 workType "article" @default.