Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904167941> ?p ?o ?g. }
- W2904167941 endingPage "2297" @default.
- W2904167941 startingPage "2287" @default.
- W2904167941 abstract "Traditional methods of human activity recognition from wearable sensors rely on good training datasets in which thousands of training sequences should be carefully labeled. However, unlike images or videos which can be easily classified by human beings, strictly labeling such sequences of sensor data needs much more manpower and computing resources. In this paper, we present a new weakly supervised human activity recognition model based on recurrent attention learning, in which an agent is trained to extract information from weakly labeled sensor data by adaptively selecting a sequence of locations. Since, the model is non-differentiable and multiple activities may occur in a sequence of sensor data, it is trained by reinforcement learning with novel reward strategies. We evaluated our model on the traditional UCI HAR dataset and our collected weakly labeled dataset. The experimental results show that our model is superior to the traditional CNN model and the DeepConvLSTM model on both datasets." @default.
- W2904167941 created "2018-12-22" @default.
- W2904167941 creator A5011552984 @default.
- W2904167941 creator A5021661339 @default.
- W2904167941 creator A5049302472 @default.
- W2904167941 creator A5058424158 @default.
- W2904167941 date "2019-03-15" @default.
- W2904167941 modified "2023-10-16" @default.
- W2904167941 title "Weakly Supervised Human Activity Recognition From Wearable Sensors by Recurrent Attention Learning" @default.
- W2904167941 cites W1485958089 @default.
- W2904167941 cites W1527911497 @default.
- W2904167941 cites W1970099751 @default.
- W2904167941 cites W2002261403 @default.
- W2904167941 cites W2012557818 @default.
- W2904167941 cites W2014084036 @default.
- W2904167941 cites W2017634428 @default.
- W2904167941 cites W2032100464 @default.
- W2904167941 cites W2035877237 @default.
- W2904167941 cites W2054242744 @default.
- W2904167941 cites W2054780155 @default.
- W2904167941 cites W2057968074 @default.
- W2904167941 cites W2119717200 @default.
- W2904167941 cites W2121269968 @default.
- W2904167941 cites W2127095067 @default.
- W2904167941 cites W2147800946 @default.
- W2904167941 cites W2160547546 @default.
- W2904167941 cites W2247209766 @default.
- W2904167941 cites W2270470215 @default.
- W2904167941 cites W2550476060 @default.
- W2904167941 cites W2551239383 @default.
- W2904167941 cites W2596527850 @default.
- W2904167941 cites W2604630936 @default.
- W2904167941 cites W2738199199 @default.
- W2904167941 cites W2746791238 @default.
- W2904167941 cites W2801331634 @default.
- W2904167941 cites W2919115771 @default.
- W2904167941 cites W4239510810 @default.
- W2904167941 cites W846669277 @default.
- W2904167941 doi "https://doi.org/10.1109/jsen.2018.2885796" @default.
- W2904167941 hasPublicationYear "2019" @default.
- W2904167941 type Work @default.
- W2904167941 sameAs 2904167941 @default.
- W2904167941 citedByCount "36" @default.
- W2904167941 countsByYear W29041679412019 @default.
- W2904167941 countsByYear W29041679412020 @default.
- W2904167941 countsByYear W29041679412021 @default.
- W2904167941 countsByYear W29041679412022 @default.
- W2904167941 countsByYear W29041679412023 @default.
- W2904167941 crossrefType "journal-article" @default.
- W2904167941 hasAuthorship W2904167941A5011552984 @default.
- W2904167941 hasAuthorship W2904167941A5021661339 @default.
- W2904167941 hasAuthorship W2904167941A5049302472 @default.
- W2904167941 hasAuthorship W2904167941A5058424158 @default.
- W2904167941 hasConcept C119857082 @default.
- W2904167941 hasConcept C121687571 @default.
- W2904167941 hasConcept C127413603 @default.
- W2904167941 hasConcept C149635348 @default.
- W2904167941 hasConcept C150594956 @default.
- W2904167941 hasConcept C153180895 @default.
- W2904167941 hasConcept C154945302 @default.
- W2904167941 hasConcept C201995342 @default.
- W2904167941 hasConcept C2776145971 @default.
- W2904167941 hasConcept C2778112365 @default.
- W2904167941 hasConcept C2780451532 @default.
- W2904167941 hasConcept C35639132 @default.
- W2904167941 hasConcept C41008148 @default.
- W2904167941 hasConcept C54355233 @default.
- W2904167941 hasConcept C86803240 @default.
- W2904167941 hasConcept C97541855 @default.
- W2904167941 hasConceptScore W2904167941C119857082 @default.
- W2904167941 hasConceptScore W2904167941C121687571 @default.
- W2904167941 hasConceptScore W2904167941C127413603 @default.
- W2904167941 hasConceptScore W2904167941C149635348 @default.
- W2904167941 hasConceptScore W2904167941C150594956 @default.
- W2904167941 hasConceptScore W2904167941C153180895 @default.
- W2904167941 hasConceptScore W2904167941C154945302 @default.
- W2904167941 hasConceptScore W2904167941C201995342 @default.
- W2904167941 hasConceptScore W2904167941C2776145971 @default.
- W2904167941 hasConceptScore W2904167941C2778112365 @default.
- W2904167941 hasConceptScore W2904167941C2780451532 @default.
- W2904167941 hasConceptScore W2904167941C35639132 @default.
- W2904167941 hasConceptScore W2904167941C41008148 @default.
- W2904167941 hasConceptScore W2904167941C54355233 @default.
- W2904167941 hasConceptScore W2904167941C86803240 @default.
- W2904167941 hasConceptScore W2904167941C97541855 @default.
- W2904167941 hasFunder F4320321001 @default.
- W2904167941 hasFunder F4320321885 @default.
- W2904167941 hasIssue "6" @default.
- W2904167941 hasLocation W29041679411 @default.
- W2904167941 hasOpenAccess W2904167941 @default.
- W2904167941 hasPrimaryLocation W29041679411 @default.
- W2904167941 hasRelatedWork W2124823771 @default.
- W2904167941 hasRelatedWork W2188464267 @default.
- W2904167941 hasRelatedWork W2904167941 @default.
- W2904167941 hasRelatedWork W2947903144 @default.
- W2904167941 hasRelatedWork W2967486591 @default.
- W2904167941 hasRelatedWork W3036630077 @default.
- W2904167941 hasRelatedWork W3048726935 @default.