Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904169781> ?p ?o ?g. }
- W2904169781 endingPage "298" @default.
- W2904169781 startingPage "281" @default.
- W2904169781 abstract "Abstract This article provides a computational framework to model self‐adaptive expert systems using the Petri net (PN) formalism. Self‐adaptive expert systems are understood here as expert systems with the ability to autonomously learn from external inputs, like monitoring data. To this end, the Bayesian learning principles are investigated and also combined with the Plausible PNs (PPNs) methodology. PPNs are a variant within the PN paradigm, which are efficient to jointly consider the dynamics of discrete events, like maintenance actions, together with multiple sources of uncertain information about a state variable. The manuscript shows the mathematical conditions and computational procedure where the Bayesian updating becomes a particular case of a more general basic operation within the PPN execution semantics, which enables the uncertain knowledge being updated from monitoring data. The approach is general, but here it is demonstrated in a novel computational model acting as expert system for railway track inspection management taken as a case study using published data from a laboratory simulation of train loading on ballast. The results reveal self‐adaptability and uncertainty management as key enabling aspects to optimize inspection actions in railway track, only being adaptively and autonomously triggered based on the actual learnt state of track and other contextual issues, like resource availability, as opposed to scheduled periodic maintenance activities." @default.
- W2904169781 created "2018-12-22" @default.
- W2904169781 creator A5004278876 @default.
- W2904169781 creator A5058952816 @default.
- W2904169781 creator A5071505747 @default.
- W2904169781 creator A5090594287 @default.
- W2904169781 date "2018-12-12" @default.
- W2904169781 modified "2023-10-16" @default.
- W2904169781 title "Plausible Petri nets as self‐adaptive expert systems: A tool for infrastructure asset monitoring" @default.
- W2904169781 cites W1180937571 @default.
- W2904169781 cites W1499516141 @default.
- W2904169781 cites W1512208174 @default.
- W2904169781 cites W1557280886 @default.
- W2904169781 cites W1558181787 @default.
- W2904169781 cites W1834093633 @default.
- W2904169781 cites W1966732442 @default.
- W2904169781 cites W1968556377 @default.
- W2904169781 cites W1994332111 @default.
- W2904169781 cites W1996109622 @default.
- W2904169781 cites W1997549860 @default.
- W2904169781 cites W2000896629 @default.
- W2904169781 cites W2006167965 @default.
- W2904169781 cites W2013298510 @default.
- W2904169781 cites W2019656436 @default.
- W2904169781 cites W2025130480 @default.
- W2904169781 cites W2030793589 @default.
- W2904169781 cites W2045441576 @default.
- W2904169781 cites W2062258832 @default.
- W2904169781 cites W2069849383 @default.
- W2904169781 cites W2071336415 @default.
- W2904169781 cites W2080501356 @default.
- W2904169781 cites W2081338912 @default.
- W2904169781 cites W2089075793 @default.
- W2904169781 cites W2096220889 @default.
- W2904169781 cites W2103579556 @default.
- W2904169781 cites W2109383878 @default.
- W2904169781 cites W2111966451 @default.
- W2904169781 cites W2140333081 @default.
- W2904169781 cites W2160337655 @default.
- W2904169781 cites W2168419737 @default.
- W2904169781 cites W2227874124 @default.
- W2904169781 cites W2288102304 @default.
- W2904169781 cites W2335309118 @default.
- W2904169781 cites W2573467086 @default.
- W2904169781 cites W2581101346 @default.
- W2904169781 cites W2741928354 @default.
- W2904169781 cites W2765700762 @default.
- W2904169781 cites W2770136826 @default.
- W2904169781 cites W2797906474 @default.
- W2904169781 cites W95577512 @default.
- W2904169781 doi "https://doi.org/10.1111/mice.12427" @default.
- W2904169781 hasPublicationYear "2018" @default.
- W2904169781 type Work @default.
- W2904169781 sameAs 2904169781 @default.
- W2904169781 citedByCount "5" @default.
- W2904169781 countsByYear W29041697812019 @default.
- W2904169781 countsByYear W29041697812020 @default.
- W2904169781 countsByYear W29041697812021 @default.
- W2904169781 countsByYear W29041697812022 @default.
- W2904169781 crossrefType "journal-article" @default.
- W2904169781 hasAuthorship W2904169781A5004278876 @default.
- W2904169781 hasAuthorship W2904169781A5058952816 @default.
- W2904169781 hasAuthorship W2904169781A5071505747 @default.
- W2904169781 hasAuthorship W2904169781A5090594287 @default.
- W2904169781 hasBestOaLocation W29041697811 @default.
- W2904169781 hasConcept C107673813 @default.
- W2904169781 hasConcept C119857082 @default.
- W2904169781 hasConcept C120314980 @default.
- W2904169781 hasConcept C142362112 @default.
- W2904169781 hasConcept C153349607 @default.
- W2904169781 hasConcept C154945302 @default.
- W2904169781 hasConcept C177606310 @default.
- W2904169781 hasConcept C18903297 @default.
- W2904169781 hasConcept C38677869 @default.
- W2904169781 hasConcept C41008148 @default.
- W2904169781 hasConcept C558565934 @default.
- W2904169781 hasConcept C58328972 @default.
- W2904169781 hasConcept C73301696 @default.
- W2904169781 hasConcept C86803240 @default.
- W2904169781 hasConceptScore W2904169781C107673813 @default.
- W2904169781 hasConceptScore W2904169781C119857082 @default.
- W2904169781 hasConceptScore W2904169781C120314980 @default.
- W2904169781 hasConceptScore W2904169781C142362112 @default.
- W2904169781 hasConceptScore W2904169781C153349607 @default.
- W2904169781 hasConceptScore W2904169781C154945302 @default.
- W2904169781 hasConceptScore W2904169781C177606310 @default.
- W2904169781 hasConceptScore W2904169781C18903297 @default.
- W2904169781 hasConceptScore W2904169781C38677869 @default.
- W2904169781 hasConceptScore W2904169781C41008148 @default.
- W2904169781 hasConceptScore W2904169781C558565934 @default.
- W2904169781 hasConceptScore W2904169781C58328972 @default.
- W2904169781 hasConceptScore W2904169781C73301696 @default.
- W2904169781 hasConceptScore W2904169781C86803240 @default.
- W2904169781 hasFunder F4320310833 @default.
- W2904169781 hasFunder F4320334627 @default.
- W2904169781 hasIssue "4" @default.
- W2904169781 hasLocation W29041697811 @default.
- W2904169781 hasLocation W29041697812 @default.