Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904172984> ?p ?o ?g. }
- W2904172984 endingPage "709" @default.
- W2904172984 startingPage "700" @default.
- W2904172984 abstract "•Cholangiocarcinomas are rich in stroma containing cancer-associated fibroblasts and lymphatic vessels. •PDGF-D released by tumoral ducts attracts and activates liver fibroblasts to secrete VEGF-C/VEGF-A. •Lymphangiogenesis and lymphatic invasion are driven by VEGF-A/-C released by liver myofibroblasts. •Targeting liver myofibroblasts in vivo inhibits tumor-associated lymphangiogenesis and lymph node metastases. •These studies identify new possible molecular targets for the treatment of cholangiocarcinoma. Background & Aims In cholangiocarcinoma, early metastatic spread via lymphatic vessels often precludes curative therapies. Cholangiocarcinoma invasiveness is fostered by an extensive stromal reaction, enriched in cancer-associated fibroblasts (CAFs) and lymphatic endothelial cells (LECs). Cholangiocarcinoma cells recruit and activate CAFs by secreting PDGF-D. Herein, we investigated the role of PDGF-D and liver myofibroblasts in promoting lymphangiogenesis in cholangiocarcinoma. Methods Human cholangiocarcinoma specimens were immunostained for podoplanin (LEC marker), α-SMA (CAF marker), VEGF-A, VEGF-C, and their cognate receptors (VEGFR2, VEGFR3). VEGF-A and VEGF-C secretion was evaluated in human fibroblasts obtained from primary sclerosing cholangitis explants. Using human LECs incubated with conditioned medium from PDGF-D-stimulated fibroblasts we assessed migration, 3D vascular assembly, transendothelial electric resistance and transendothelial migration of cholangiocarcinoma cells (EGI-1). We then studied the effects of selective CAF depletion induced by the BH3 mimetic navitoclax on LEC density and lymph node metastases in vivo. Results In cholangiocarcinoma specimens, CAFs and LECs were closely adjacent. CAFs expressed VEGF-A and VEGF-C, while LECs expressed VEGFR2 and VEGFR3. Upon PDGF-D stimulation, fibroblasts secreted increased levels of VEGF-C and VEGF-A. Fibroblasts, stimulated by PDGF-D induced LEC recruitment and 3D assembly, increased LEC monolayer permeability, and promoted transendothelial EGI-1 migration. These effects were all suppressed by the PDGFRβ inhibitor, imatinib. In the rat model of cholangiocarcinoma, navitoclax-induced CAF depletion, markedly reduced lymphatic vascularization and reduced lymph node metastases. Conclusion PDGF-D stimulates VEGF-C and VEGF-A production by fibroblasts, resulting in expansion of the lymphatic vasculature and tumor cell intravasation. This critical process in the early metastasis of cholangiocarcinoma may be blocked by inducing CAF apoptosis or by inhibiting the PDGF-D-induced axis. Lay summary Cholangiocarcinoma is a highly malignant cancer affecting the biliary tree, which is characterized by a rich stromal reaction involving a dense population of cancer-associated fibroblasts that promote early metastatic spread. Herein, we show that cholangiocarcinoma-derived PDGF-D stimulates fibroblasts to secrete vascular growth factors. Thus, targeting fibroblasts or PDGF-D-induced signals may represent an effective tool to block tumor-associated lymphangiogenesis and reduce the invasiveness of cholangiocarcinoma. In cholangiocarcinoma, early metastatic spread via lymphatic vessels often precludes curative therapies. Cholangiocarcinoma invasiveness is fostered by an extensive stromal reaction, enriched in cancer-associated fibroblasts (CAFs) and lymphatic endothelial cells (LECs). Cholangiocarcinoma cells recruit and activate CAFs by secreting PDGF-D. Herein, we investigated the role of PDGF-D and liver myofibroblasts in promoting lymphangiogenesis in cholangiocarcinoma. Human cholangiocarcinoma specimens were immunostained for podoplanin (LEC marker), α-SMA (CAF marker), VEGF-A, VEGF-C, and their cognate receptors (VEGFR2, VEGFR3). VEGF-A and VEGF-C secretion was evaluated in human fibroblasts obtained from primary sclerosing cholangitis explants. Using human LECs incubated with conditioned medium from PDGF-D-stimulated fibroblasts we assessed migration, 3D vascular assembly, transendothelial electric resistance and transendothelial migration of cholangiocarcinoma cells (EGI-1). We then studied the effects of selective CAF depletion induced by the BH3 mimetic navitoclax on LEC density and lymph node metastases in vivo. In cholangiocarcinoma specimens, CAFs and LECs were closely adjacent. CAFs expressed VEGF-A and VEGF-C, while LECs expressed VEGFR2 and VEGFR3. Upon PDGF-D stimulation, fibroblasts secreted increased levels of VEGF-C and VEGF-A. Fibroblasts, stimulated by PDGF-D induced LEC recruitment and 3D assembly, increased LEC monolayer permeability, and promoted transendothelial EGI-1 migration. These effects were all suppressed by the PDGFRβ inhibitor, imatinib. In the rat model of cholangiocarcinoma, navitoclax-induced CAF depletion, markedly reduced lymphatic vascularization and reduced lymph node metastases. PDGF-D stimulates VEGF-C and VEGF-A production by fibroblasts, resulting in expansion of the lymphatic vasculature and tumor cell intravasation. This critical process in the early metastasis of cholangiocarcinoma may be blocked by inducing CAF apoptosis or by inhibiting the PDGF-D-induced axis." @default.
- W2904172984 created "2018-12-22" @default.
- W2904172984 creator A5005401811 @default.
- W2904172984 creator A5005614526 @default.
- W2904172984 creator A5013568442 @default.
- W2904172984 creator A5018143293 @default.
- W2904172984 creator A5029178800 @default.
- W2904172984 creator A5034146725 @default.
- W2904172984 creator A5034768011 @default.
- W2904172984 creator A5035712059 @default.
- W2904172984 creator A5040151622 @default.
- W2904172984 creator A5042292637 @default.
- W2904172984 creator A5042438955 @default.
- W2904172984 creator A5043448923 @default.
- W2904172984 creator A5056184173 @default.
- W2904172984 creator A5058175056 @default.
- W2904172984 creator A5070092601 @default.
- W2904172984 creator A5071899214 @default.
- W2904172984 creator A5075639693 @default.
- W2904172984 creator A5077023498 @default.
- W2904172984 creator A5084906551 @default.
- W2904172984 date "2019-04-01" @default.
- W2904172984 modified "2023-10-14" @default.
- W2904172984 title "Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma" @default.
- W2904172984 cites W1570971207 @default.
- W2904172984 cites W1673643619 @default.
- W2904172984 cites W1965652580 @default.
- W2904172984 cites W1967055039 @default.
- W2904172984 cites W1997508706 @default.
- W2904172984 cites W2012063336 @default.
- W2904172984 cites W2014305977 @default.
- W2904172984 cites W2016987003 @default.
- W2904172984 cites W2018363458 @default.
- W2904172984 cites W2020084657 @default.
- W2904172984 cites W2030201335 @default.
- W2904172984 cites W2034770797 @default.
- W2904172984 cites W2043249221 @default.
- W2904172984 cites W2045648996 @default.
- W2904172984 cites W2048802787 @default.
- W2904172984 cites W2049184800 @default.
- W2904172984 cites W2062809449 @default.
- W2904172984 cites W2069225985 @default.
- W2904172984 cites W2071731434 @default.
- W2904172984 cites W2071998277 @default.
- W2904172984 cites W2079024431 @default.
- W2904172984 cites W2082656764 @default.
- W2904172984 cites W2085793108 @default.
- W2904172984 cites W2090457644 @default.
- W2904172984 cites W2093401218 @default.
- W2904172984 cites W2099690168 @default.
- W2904172984 cites W2136095967 @default.
- W2904172984 cites W2140154973 @default.
- W2904172984 cites W2150156158 @default.
- W2904172984 cites W2164203667 @default.
- W2904172984 cites W2165830993 @default.
- W2904172984 cites W2327818135 @default.
- W2904172984 cites W2337387091 @default.
- W2904172984 cites W2524927879 @default.
- W2904172984 cites W2739780552 @default.
- W2904172984 doi "https://doi.org/10.1016/j.jhep.2018.12.004" @default.
- W2904172984 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30553841" @default.
- W2904172984 hasPublicationYear "2019" @default.
- W2904172984 type Work @default.
- W2904172984 sameAs 2904172984 @default.
- W2904172984 citedByCount "98" @default.
- W2904172984 countsByYear W29041729842019 @default.
- W2904172984 countsByYear W29041729842020 @default.
- W2904172984 countsByYear W29041729842021 @default.
- W2904172984 countsByYear W29041729842022 @default.
- W2904172984 countsByYear W29041729842023 @default.
- W2904172984 crossrefType "journal-article" @default.
- W2904172984 hasAuthorship W2904172984A5005401811 @default.
- W2904172984 hasAuthorship W2904172984A5005614526 @default.
- W2904172984 hasAuthorship W2904172984A5013568442 @default.
- W2904172984 hasAuthorship W2904172984A5018143293 @default.
- W2904172984 hasAuthorship W2904172984A5029178800 @default.
- W2904172984 hasAuthorship W2904172984A5034146725 @default.
- W2904172984 hasAuthorship W2904172984A5034768011 @default.
- W2904172984 hasAuthorship W2904172984A5035712059 @default.
- W2904172984 hasAuthorship W2904172984A5040151622 @default.
- W2904172984 hasAuthorship W2904172984A5042292637 @default.
- W2904172984 hasAuthorship W2904172984A5042438955 @default.
- W2904172984 hasAuthorship W2904172984A5043448923 @default.
- W2904172984 hasAuthorship W2904172984A5056184173 @default.
- W2904172984 hasAuthorship W2904172984A5058175056 @default.
- W2904172984 hasAuthorship W2904172984A5070092601 @default.
- W2904172984 hasAuthorship W2904172984A5071899214 @default.
- W2904172984 hasAuthorship W2904172984A5075639693 @default.
- W2904172984 hasAuthorship W2904172984A5077023498 @default.
- W2904172984 hasAuthorship W2904172984A5084906551 @default.
- W2904172984 hasBestOaLocation W29041729842 @default.
- W2904172984 hasConcept C121608353 @default.
- W2904172984 hasConcept C126322002 @default.
- W2904172984 hasConcept C142724271 @default.
- W2904172984 hasConcept C16930146 @default.
- W2904172984 hasConcept C170493617 @default.
- W2904172984 hasConcept C180361614 @default.
- W2904172984 hasConcept C181152851 @default.