Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904173660> ?p ?o ?g. }
- W2904173660 endingPage "100" @default.
- W2904173660 startingPage "91" @default.
- W2904173660 abstract "Differential and not fair exposure to environmental risk factors across socio-demographic groups, called environmental justice (EJ), may contribute to inequalities in health and most often put disadvantaged groups at higher risk for environmental health effects. Main literature has difficulties to consider the potential exposure of populations to different levels of air pollutants. Cumulative and long-term exposures are still seldom considered. We propose a comprehensive EJ methodology to prioritize and characterize neighborhoods which takes into account the cumulative impact of health determinants. For this purpose, the use of environmental biomonitoring is an innovative approach to consider the integrated and long-term exposure to complex air pollution. Cumulative Impact Screening (CIS) methodology was used for two contrasted living areas of France. CIS is based on synthetic and composite index construction. Three scores were attributed to each neighborhood according to a cumulative calculation of key parameters: environmental score (using 3 air biomonitoring parameters: trace elements loads in lichens, lichenic biodiversity and dust deposition on poplar leaves), socioeconomic deprivation score and susceptible population score. Each score can be considered as a dimension of health vulnerability. CIS analysis and maps highlighted the unequal spatial distribution of EJ. After the multi-criteria hierarchization of spatial units, the influence of each dimension was characterized in each neighborhood with radar charts. The study was carried out in two living areas in the north of France: a costal industrial zone, the Dunkerque Urban Community and a densely populated area located at the crossroads of Europe, the European Lille Metropolis. Three neighborhoods of the highest vulnerability level were identified in each area. We highlighted a same level of vulnerability can be related to different profiles of determinants. This multidimensional approach was able to discriminate neighborhoods with a gradient level of vulnerability in each area, despite different environmental, demographic and economic contexts. This cross-use constitutes a preliminary validation in order to assess the replicability of the methodology. This step showed that this approach could be replicated in countries or regions which would have different characteristics: it is both specific to a given context and well suited for different contexts. We demonstrated that environmental biomonitoring is a smart approach to fill the lack of available data on multiple air pollution at the local scale. The tool developed is specific to the territory and transposable and communicant, which facilitate adoption by a variety of community agency and other regulatory stakeholders, and prioritization of public health actions." @default.
- W2904173660 created "2018-12-22" @default.
- W2904173660 creator A5025735358 @default.
- W2904173660 creator A5042815160 @default.
- W2904173660 creator A5045345721 @default.
- W2904173660 creator A5048665393 @default.
- W2904173660 creator A5071135486 @default.
- W2904173660 date "2019-04-01" @default.
- W2904173660 modified "2023-10-16" @default.
- W2904173660 title "Spatial analysis of environmental inequalities caused by multiple air pollutants: A cumulative impact screening method, applied to the north of France" @default.
- W2904173660 cites W1237969871 @default.
- W2904173660 cites W1937705311 @default.
- W2904173660 cites W1967676247 @default.
- W2904173660 cites W1976017709 @default.
- W2904173660 cites W1977436565 @default.
- W2904173660 cites W1983547006 @default.
- W2904173660 cites W1995707466 @default.
- W2904173660 cites W2000897513 @default.
- W2904173660 cites W2005333300 @default.
- W2904173660 cites W2023987122 @default.
- W2904173660 cites W2026520905 @default.
- W2904173660 cites W2035438790 @default.
- W2904173660 cites W2037487499 @default.
- W2904173660 cites W2040254129 @default.
- W2904173660 cites W2049388977 @default.
- W2904173660 cites W2056573916 @default.
- W2904173660 cites W2057526426 @default.
- W2904173660 cites W2063130098 @default.
- W2904173660 cites W2064668121 @default.
- W2904173660 cites W2075642883 @default.
- W2904173660 cites W2087055101 @default.
- W2904173660 cites W2087621972 @default.
- W2904173660 cites W2099236921 @default.
- W2904173660 cites W2109933771 @default.
- W2904173660 cites W2111544271 @default.
- W2904173660 cites W2120409425 @default.
- W2904173660 cites W2125718476 @default.
- W2904173660 cites W2134742846 @default.
- W2904173660 cites W2135023471 @default.
- W2904173660 cites W2136342893 @default.
- W2904173660 cites W2146798404 @default.
- W2904173660 cites W2170726295 @default.
- W2904173660 cites W2237733068 @default.
- W2904173660 cites W2279519713 @default.
- W2904173660 cites W2289687646 @default.
- W2904173660 cites W2300051809 @default.
- W2904173660 cites W2336294824 @default.
- W2904173660 cites W2342451715 @default.
- W2904173660 cites W2342898303 @default.
- W2904173660 cites W2479867268 @default.
- W2904173660 cites W2489780306 @default.
- W2904173660 cites W2512730378 @default.
- W2904173660 cites W2570922310 @default.
- W2904173660 cites W2584062956 @default.
- W2904173660 cites W2584433171 @default.
- W2904173660 cites W2605117638 @default.
- W2904173660 cites W2790582243 @default.
- W2904173660 cites W4247818158 @default.
- W2904173660 doi "https://doi.org/10.1016/j.ecolind.2018.12.011" @default.
- W2904173660 hasPublicationYear "2019" @default.
- W2904173660 type Work @default.
- W2904173660 sameAs 2904173660 @default.
- W2904173660 citedByCount "14" @default.
- W2904173660 countsByYear W29041736602019 @default.
- W2904173660 countsByYear W29041736602020 @default.
- W2904173660 countsByYear W29041736602021 @default.
- W2904173660 countsByYear W29041736602022 @default.
- W2904173660 countsByYear W29041736602023 @default.
- W2904173660 crossrefType "journal-article" @default.
- W2904173660 hasAuthorship W2904173660A5025735358 @default.
- W2904173660 hasAuthorship W2904173660A5042815160 @default.
- W2904173660 hasAuthorship W2904173660A5045345721 @default.
- W2904173660 hasAuthorship W2904173660A5048665393 @default.
- W2904173660 hasAuthorship W2904173660A5071135486 @default.
- W2904173660 hasConcept C100970517 @default.
- W2904173660 hasConcept C109051061 @default.
- W2904173660 hasConcept C147077947 @default.
- W2904173660 hasConcept C18903297 @default.
- W2904173660 hasConcept C205649164 @default.
- W2904173660 hasConcept C2778560467 @default.
- W2904173660 hasConcept C2908647359 @default.
- W2904173660 hasConcept C39432304 @default.
- W2904173660 hasConcept C526734887 @default.
- W2904173660 hasConcept C559116025 @default.
- W2904173660 hasConcept C71924100 @default.
- W2904173660 hasConcept C82685317 @default.
- W2904173660 hasConcept C86803240 @default.
- W2904173660 hasConcept C99454951 @default.
- W2904173660 hasConceptScore W2904173660C100970517 @default.
- W2904173660 hasConceptScore W2904173660C109051061 @default.
- W2904173660 hasConceptScore W2904173660C147077947 @default.
- W2904173660 hasConceptScore W2904173660C18903297 @default.
- W2904173660 hasConceptScore W2904173660C205649164 @default.
- W2904173660 hasConceptScore W2904173660C2778560467 @default.
- W2904173660 hasConceptScore W2904173660C2908647359 @default.
- W2904173660 hasConceptScore W2904173660C39432304 @default.
- W2904173660 hasConceptScore W2904173660C526734887 @default.
- W2904173660 hasConceptScore W2904173660C559116025 @default.