Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904174163> ?p ?o ?g. }
- W2904174163 endingPage "2218" @default.
- W2904174163 startingPage "2204" @default.
- W2904174163 abstract "An importance measure of 3D objects inspired by human perception has a range of applications since people want computers to behave like humans in many tasks. This paper revisits a well-defined measure, distinction of 3D surface mesh, which indicates how important a region of a mesh is with respect to classification. We develop a method to compute it based on a classification network and a Markov Random Field (MRF). The classification network learns view-based distinction by handling multiple views of a 3D object. Using a classification network has an advantage of avoiding the training data problem which has become a major obstacle of applying deep learning to 3D object understanding tasks. The MRF estimates the parameters of a linear model for combining the view-based distinction maps. The experiments using several publicly accessible datasets show that the distinctive regions detected by our method are not just significantly different from those detected by methods based on handcrafted features, but more consistent with human perception. We also compare it with other perceptual measures and quantitatively evaluate its performance in the context of two applications. Furthermore, due to the view-based nature of our method, we are able to easily extend mesh distinction to 3D scenes containing multiple objects." @default.
- W2904174163 created "2018-12-22" @default.
- W2904174163 creator A5017205444 @default.
- W2904174163 creator A5047100124 @default.
- W2904174163 creator A5068129380 @default.
- W2904174163 date "2020-06-01" @default.
- W2904174163 modified "2023-09-26" @default.
- W2904174163 title "Distinction of 3D Objects and Scenes via Classification Network and Markov Random Field" @default.
- W2904174163 cites W1497443722 @default.
- W2904174163 cites W1554544485 @default.
- W2904174163 cites W1562664311 @default.
- W2904174163 cites W1567302070 @default.
- W2904174163 cites W1597928342 @default.
- W2904174163 cites W1644641054 @default.
- W2904174163 cites W1920022804 @default.
- W2904174163 cites W1942214758 @default.
- W2904174163 cites W1993713494 @default.
- W2904174163 cites W1996168020 @default.
- W2904174163 cites W2002357891 @default.
- W2904174163 cites W2002574940 @default.
- W2904174163 cites W2007566469 @default.
- W2904174163 cites W2010209818 @default.
- W2904174163 cites W2020327719 @default.
- W2904174163 cites W2020682184 @default.
- W2904174163 cites W2031878977 @default.
- W2904174163 cites W2036438040 @default.
- W2904174163 cites W2040279394 @default.
- W2904174163 cites W2041719651 @default.
- W2904174163 cites W2042164058 @default.
- W2904174163 cites W2051448670 @default.
- W2904174163 cites W2063513338 @default.
- W2904174163 cites W20683899 @default.
- W2904174163 cites W2093353037 @default.
- W2904174163 cites W2098350864 @default.
- W2904174163 cites W2099789128 @default.
- W2904174163 cites W2101309634 @default.
- W2904174163 cites W2107216992 @default.
- W2904174163 cites W2108598243 @default.
- W2904174163 cites W2117183049 @default.
- W2904174163 cites W2128272608 @default.
- W2904174163 cites W2128340050 @default.
- W2904174163 cites W2132303710 @default.
- W2904174163 cites W2137372226 @default.
- W2904174163 cites W2138663006 @default.
- W2904174163 cites W2146103513 @default.
- W2904174163 cites W2147545324 @default.
- W2904174163 cites W2149095485 @default.
- W2904174163 cites W2149933564 @default.
- W2904174163 cites W2151132226 @default.
- W2904174163 cites W2159291411 @default.
- W2904174163 cites W2165949176 @default.
- W2904174163 cites W2254644702 @default.
- W2904174163 cites W2295382923 @default.
- W2904174163 cites W2340988230 @default.
- W2904174163 cites W2437041077 @default.
- W2904174163 cites W2475168403 @default.
- W2904174163 cites W2553856265 @default.
- W2904174163 cites W2560609797 @default.
- W2904174163 cites W2565662353 @default.
- W2904174163 cites W2600144439 @default.
- W2904174163 cites W2962731536 @default.
- W2904174163 cites W2962851944 @default.
- W2904174163 cites W2963173190 @default.
- W2904174163 cites W2963333168 @default.
- W2904174163 cites W2963425704 @default.
- W2904174163 cites W3102713731 @default.
- W2904174163 cites W334719179 @default.
- W2904174163 doi "https://doi.org/10.1109/tvcg.2018.2885750" @default.
- W2904174163 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30530330" @default.
- W2904174163 hasPublicationYear "2020" @default.
- W2904174163 type Work @default.
- W2904174163 sameAs 2904174163 @default.
- W2904174163 citedByCount "3" @default.
- W2904174163 countsByYear W29041741632019 @default.
- W2904174163 countsByYear W29041741632020 @default.
- W2904174163 countsByYear W29041741632022 @default.
- W2904174163 crossrefType "journal-article" @default.
- W2904174163 hasAuthorship W2904174163A5017205444 @default.
- W2904174163 hasAuthorship W2904174163A5047100124 @default.
- W2904174163 hasAuthorship W2904174163A5068129380 @default.
- W2904174163 hasBestOaLocation W29041741632 @default.
- W2904174163 hasConcept C105795698 @default.
- W2904174163 hasConcept C115961682 @default.
- W2904174163 hasConcept C119857082 @default.
- W2904174163 hasConcept C124101348 @default.
- W2904174163 hasConcept C124504099 @default.
- W2904174163 hasConcept C151730666 @default.
- W2904174163 hasConcept C153180895 @default.
- W2904174163 hasConcept C154945302 @default.
- W2904174163 hasConcept C159886148 @default.
- W2904174163 hasConcept C169760540 @default.
- W2904174163 hasConcept C17744445 @default.
- W2904174163 hasConcept C199539241 @default.
- W2904174163 hasConcept C202444582 @default.
- W2904174163 hasConcept C23224414 @default.
- W2904174163 hasConcept C26760741 @default.
- W2904174163 hasConcept C2776650193 @default.
- W2904174163 hasConcept C2778045648 @default.