Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904175658> ?p ?o ?g. }
- W2904175658 endingPage "1197" @default.
- W2904175658 startingPage "1188" @default.
- W2904175658 abstract "Spatio-temporal dependencies are the key to predicting the traffic parameters of an urban arterial network. However, their inclusion in forecasting traffic states has been hampered due to both the absence of a robust model and the computational burden. Recently, an innovative way to tackle the problem was developed by adopting a convolutional neural network (CNN) to deal with map images representing traffic states. Unlike previous studies that utilized map images only for input, the present study adopted images for both the input and the output of a CNN model to predict traffic speeds. The results show that the performance of the proposed model based on image-to-image learning is superior to that of the existing models." @default.
- W2904175658 created "2018-12-22" @default.
- W2904175658 creator A5030214558 @default.
- W2904175658 creator A5064154678 @default.
- W2904175658 creator A5076961575 @default.
- W2904175658 creator A5080535712 @default.
- W2904175658 date "2019-02-01" @default.
- W2904175658 modified "2023-09-25" @default.
- W2904175658 title "Image-to-Image Learning to Predict Traffic Speeds by Considering Area-Wide Spatio-Temporal Dependencies" @default.
- W2904175658 cites W1745334888 @default.
- W2904175658 cites W1964725609 @default.
- W2904175658 cites W1972269447 @default.
- W2904175658 cites W1973943669 @default.
- W2904175658 cites W1991694886 @default.
- W2904175658 cites W1992575402 @default.
- W2904175658 cites W2004073866 @default.
- W2904175658 cites W2004353783 @default.
- W2904175658 cites W2036785686 @default.
- W2904175658 cites W2037141248 @default.
- W2904175658 cites W2047493229 @default.
- W2904175658 cites W2057918527 @default.
- W2904175658 cites W2068017609 @default.
- W2904175658 cites W2069929199 @default.
- W2904175658 cites W2085592822 @default.
- W2904175658 cites W2094350745 @default.
- W2904175658 cites W2111991989 @default.
- W2904175658 cites W2124128171 @default.
- W2904175658 cites W2157677694 @default.
- W2904175658 cites W2165991108 @default.
- W2904175658 cites W2190353863 @default.
- W2904175658 cites W2259087662 @default.
- W2904175658 cites W2467914952 @default.
- W2904175658 cites W2483705917 @default.
- W2904175658 cites W2525614189 @default.
- W2904175658 cites W2530386080 @default.
- W2904175658 cites W2579495707 @default.
- W2904175658 cites W2613331518 @default.
- W2904175658 cites W2750413591 @default.
- W2904175658 cites W2770890411 @default.
- W2904175658 cites W2888466235 @default.
- W2904175658 cites W2964172523 @default.
- W2904175658 doi "https://doi.org/10.1109/tvt.2018.2885366" @default.
- W2904175658 hasPublicationYear "2019" @default.
- W2904175658 type Work @default.
- W2904175658 sameAs 2904175658 @default.
- W2904175658 citedByCount "38" @default.
- W2904175658 countsByYear W29041756582019 @default.
- W2904175658 countsByYear W29041756582020 @default.
- W2904175658 countsByYear W29041756582021 @default.
- W2904175658 countsByYear W29041756582022 @default.
- W2904175658 countsByYear W29041756582023 @default.
- W2904175658 crossrefType "journal-article" @default.
- W2904175658 hasAuthorship W2904175658A5030214558 @default.
- W2904175658 hasAuthorship W2904175658A5064154678 @default.
- W2904175658 hasAuthorship W2904175658A5076961575 @default.
- W2904175658 hasAuthorship W2904175658A5080535712 @default.
- W2904175658 hasConcept C108583219 @default.
- W2904175658 hasConcept C115961682 @default.
- W2904175658 hasConcept C119857082 @default.
- W2904175658 hasConcept C124101348 @default.
- W2904175658 hasConcept C153180895 @default.
- W2904175658 hasConcept C154945302 @default.
- W2904175658 hasConcept C26517878 @default.
- W2904175658 hasConcept C31972630 @default.
- W2904175658 hasConcept C38652104 @default.
- W2904175658 hasConcept C41008148 @default.
- W2904175658 hasConcept C50644808 @default.
- W2904175658 hasConcept C81363708 @default.
- W2904175658 hasConceptScore W2904175658C108583219 @default.
- W2904175658 hasConceptScore W2904175658C115961682 @default.
- W2904175658 hasConceptScore W2904175658C119857082 @default.
- W2904175658 hasConceptScore W2904175658C124101348 @default.
- W2904175658 hasConceptScore W2904175658C153180895 @default.
- W2904175658 hasConceptScore W2904175658C154945302 @default.
- W2904175658 hasConceptScore W2904175658C26517878 @default.
- W2904175658 hasConceptScore W2904175658C31972630 @default.
- W2904175658 hasConceptScore W2904175658C38652104 @default.
- W2904175658 hasConceptScore W2904175658C41008148 @default.
- W2904175658 hasConceptScore W2904175658C50644808 @default.
- W2904175658 hasConceptScore W2904175658C81363708 @default.
- W2904175658 hasFunder F4320322120 @default.
- W2904175658 hasIssue "2" @default.
- W2904175658 hasLocation W29041756581 @default.
- W2904175658 hasOpenAccess W2904175658 @default.
- W2904175658 hasPrimaryLocation W29041756581 @default.
- W2904175658 hasRelatedWork W2731899572 @default.
- W2904175658 hasRelatedWork W2999805992 @default.
- W2904175658 hasRelatedWork W3116150086 @default.
- W2904175658 hasRelatedWork W3133861977 @default.
- W2904175658 hasRelatedWork W4200173597 @default.
- W2904175658 hasRelatedWork W4223943233 @default.
- W2904175658 hasRelatedWork W4291897433 @default.
- W2904175658 hasRelatedWork W4312417841 @default.
- W2904175658 hasRelatedWork W4321369474 @default.
- W2904175658 hasRelatedWork W4380075502 @default.
- W2904175658 hasVolume "68" @default.
- W2904175658 isParatext "false" @default.
- W2904175658 isRetracted "false" @default.