Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904181725> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2904181725 endingPage "024002" @default.
- W2904181725 startingPage "024002" @default.
- W2904181725 abstract "Over the past decade, there has been a resurgence in the importance of data-driven techniques in material science and engineering. The utilization of state-of-the art algorithms, coupled with the increased availability of experimental and computational data, has led to the development of surrogate models offering the promise of rapid and accurate predictions of materials properties based solely on their structure or composition. Such machine learning models are trained on available past data and are thus susceptible to the intrinsic uncertainties/errors associate with these past measurements. The glass transition temperature (Tlsubggl/subg) of polymers, a property of paramount interest in polymer science, is one strong example of a material property that can show widespread variation in the final reported value as a result of a variety of intrinsic and extrinsic factors that occur during the experimental measurement process. In the current work, we curate a large database of Tlsubggl/subg measurements from a variety of data sources and proceed to investigate the statistical nature of the inherent uncertainties in the database. Through the partitioning of the dataset using statistically relevant measures, we investigate the effect of variations in the dataset on the performance of the final machine learning model. We demonstrate that measures of central tendency (such as mean and median) are valid approximations when dealing with multiple reported values of Tlsubggl/subg for the same polymeric material. Moreover, the Bayesian model noise/uncertainty that emerges from our machine-learning pipeline is able to represent quantitatively the underlying noise/uncertainties in the experimental measurement of Tlsubggl/subg." @default.
- W2904181725 created "2018-12-22" @default.
- W2904181725 creator A5018939520 @default.
- W2904181725 creator A5031952600 @default.
- W2904181725 creator A5037145241 @default.
- W2904181725 creator A5068304901 @default.
- W2904181725 date "2019-01-17" @default.
- W2904181725 modified "2023-09-29" @default.
- W2904181725 title "Impact of dataset uncertainties on machine learning model predictions: the example of polymer glass transition temperatures" @default.
- W2904181725 cites W1513260206 @default.
- W2904181725 cites W1965192594 @default.
- W2904181725 cites W1969354909 @default.
- W2904181725 cites W1975147762 @default.
- W2904181725 cites W1982598895 @default.
- W2904181725 cites W2006319367 @default.
- W2904181725 cites W2011857854 @default.
- W2904181725 cites W2033495141 @default.
- W2904181725 cites W2034354062 @default.
- W2904181725 cites W2046598747 @default.
- W2904181725 cites W2060532150 @default.
- W2904181725 cites W2079639517 @default.
- W2904181725 cites W2080447388 @default.
- W2904181725 cites W2090467197 @default.
- W2904181725 cites W2163487718 @default.
- W2904181725 cites W2177317049 @default.
- W2904181725 cites W2261108203 @default.
- W2904181725 cites W2356584815 @default.
- W2904181725 cites W2415372084 @default.
- W2904181725 cites W2493902203 @default.
- W2904181725 cites W2508632634 @default.
- W2904181725 cites W2510120882 @default.
- W2904181725 cites W2530960271 @default.
- W2904181725 cites W2561003326 @default.
- W2904181725 cites W2606191816 @default.
- W2904181725 cites W2608722029 @default.
- W2904181725 cites W2612591418 @default.
- W2904181725 cites W2624679515 @default.
- W2904181725 cites W2742835787 @default.
- W2904181725 cites W2755837508 @default.
- W2904181725 cites W2762836614 @default.
- W2904181725 cites W2768044911 @default.
- W2904181725 cites W2780553247 @default.
- W2904181725 cites W2883528235 @default.
- W2904181725 cites W2883583109 @default.
- W2904181725 cites W2963784900 @default.
- W2904181725 cites W3098552753 @default.
- W2904181725 cites W4299576998 @default.
- W2904181725 doi "https://doi.org/10.1088/1361-651x/aaf8ca" @default.
- W2904181725 hasPublicationYear "2019" @default.
- W2904181725 type Work @default.
- W2904181725 sameAs 2904181725 @default.
- W2904181725 citedByCount "58" @default.
- W2904181725 countsByYear W29041817252019 @default.
- W2904181725 countsByYear W29041817252020 @default.
- W2904181725 countsByYear W29041817252021 @default.
- W2904181725 countsByYear W29041817252022 @default.
- W2904181725 countsByYear W29041817252023 @default.
- W2904181725 crossrefType "journal-article" @default.
- W2904181725 hasAuthorship W2904181725A5018939520 @default.
- W2904181725 hasAuthorship W2904181725A5031952600 @default.
- W2904181725 hasAuthorship W2904181725A5037145241 @default.
- W2904181725 hasAuthorship W2904181725A5068304901 @default.
- W2904181725 hasConcept C121332964 @default.
- W2904181725 hasConcept C121864883 @default.
- W2904181725 hasConcept C122865956 @default.
- W2904181725 hasConcept C159985019 @default.
- W2904181725 hasConcept C192562407 @default.
- W2904181725 hasConcept C521977710 @default.
- W2904181725 hasConcept C97355855 @default.
- W2904181725 hasConceptScore W2904181725C121332964 @default.
- W2904181725 hasConceptScore W2904181725C121864883 @default.
- W2904181725 hasConceptScore W2904181725C122865956 @default.
- W2904181725 hasConceptScore W2904181725C159985019 @default.
- W2904181725 hasConceptScore W2904181725C192562407 @default.
- W2904181725 hasConceptScore W2904181725C521977710 @default.
- W2904181725 hasConceptScore W2904181725C97355855 @default.
- W2904181725 hasIssue "2" @default.
- W2904181725 hasLocation W29041817251 @default.
- W2904181725 hasOpenAccess W2904181725 @default.
- W2904181725 hasPrimaryLocation W29041817251 @default.
- W2904181725 hasRelatedWork W1970110068 @default.
- W2904181725 hasRelatedWork W1994978468 @default.
- W2904181725 hasRelatedWork W2013838556 @default.
- W2904181725 hasRelatedWork W2017055889 @default.
- W2904181725 hasRelatedWork W2050296450 @default.
- W2904181725 hasRelatedWork W2391521962 @default.
- W2904181725 hasRelatedWork W2612459344 @default.
- W2904181725 hasRelatedWork W3007366634 @default.
- W2904181725 hasRelatedWork W876143523 @default.
- W2904181725 hasRelatedWork W239641466 @default.
- W2904181725 hasVolume "27" @default.
- W2904181725 isParatext "false" @default.
- W2904181725 isRetracted "false" @default.
- W2904181725 magId "2904181725" @default.
- W2904181725 workType "article" @default.