Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904188519> ?p ?o ?g. }
- W2904188519 abstract "Classical supervised learning produces unreliable models when training and target distributions differ, with most existing solutions requiring samples from the target domain. We propose a proactive approach which learns a relationship in the training domain that will generalize to the target domain by incorporating prior knowledge of aspects of the data generating process that are expected to differ as expressed in a causal selection diagram. Specifically, we remove variables generated by unstable mechanisms from the joint factorization to yield the Surgery Estimator---an interventional distribution that is invariant to the differences across environments. We prove that the surgery estimator finds stable relationships in strictly more scenarios than previous approaches which only consider conditional relationships, and demonstrate this in simulated experiments. We also evaluate on real world data for which the true causal diagram is unknown, performing competitively against entirely data-driven approaches." @default.
- W2904188519 created "2018-12-22" @default.
- W2904188519 creator A5008492426 @default.
- W2904188519 creator A5055371276 @default.
- W2904188519 creator A5062659157 @default.
- W2904188519 date "2018-12-11" @default.
- W2904188519 modified "2023-09-28" @default.
- W2904188519 title "Preventing Failures Due to Dataset Shift: Learning Predictive Models That Transport." @default.
- W2904188519 cites W123476658 @default.
- W2904188519 cites W1486066286 @default.
- W2904188519 cites W1500567887 @default.
- W2904188519 cites W1511986666 @default.
- W2904188519 cites W1524326598 @default.
- W2904188519 cites W1528089658 @default.
- W2904188519 cites W1568555062 @default.
- W2904188519 cites W1590693676 @default.
- W2904188519 cites W188311448 @default.
- W2904188519 cites W189742998 @default.
- W2904188519 cites W1992816730 @default.
- W2904188519 cites W2006398000 @default.
- W2904188519 cites W2079062180 @default.
- W2904188519 cites W2144020560 @default.
- W2904188519 cites W2153929442 @default.
- W2904188519 cites W2162651021 @default.
- W2904188519 cites W2463241543 @default.
- W2904188519 cites W2488917374 @default.
- W2904188519 cites W2529251251 @default.
- W2904188519 cites W2781942582 @default.
- W2904188519 cites W2784407808 @default.
- W2904188519 cites W2801890059 @default.
- W2904188519 cites W2811374795 @default.
- W2904188519 cites W2887788426 @default.
- W2904188519 cites W2891620446 @default.
- W2904188519 cites W2891765548 @default.
- W2904188519 cites W2913031999 @default.
- W2904188519 cites W2917248696 @default.
- W2904188519 cites W2937305891 @default.
- W2904188519 cites W2950362879 @default.
- W2904188519 cites W2952414837 @default.
- W2904188519 cites W2962739340 @default.
- W2904188519 cites W2963539647 @default.
- W2904188519 cites W2964052841 @default.
- W2904188519 cites W3093405022 @default.
- W2904188519 cites W3120740533 @default.
- W2904188519 cites W607505555 @default.
- W2904188519 cites W879220392 @default.
- W2904188519 cites W2886503111 @default.
- W2904188519 hasPublicationYear "2018" @default.
- W2904188519 type Work @default.
- W2904188519 sameAs 2904188519 @default.
- W2904188519 citedByCount "2" @default.
- W2904188519 countsByYear W29041885192019 @default.
- W2904188519 countsByYear W29041885192020 @default.
- W2904188519 crossrefType "posted-content" @default.
- W2904188519 hasAuthorship W2904188519A5008492426 @default.
- W2904188519 hasAuthorship W2904188519A5055371276 @default.
- W2904188519 hasAuthorship W2904188519A5062659157 @default.
- W2904188519 hasConcept C105795698 @default.
- W2904188519 hasConcept C111919701 @default.
- W2904188519 hasConcept C119857082 @default.
- W2904188519 hasConcept C134306372 @default.
- W2904188519 hasConcept C154945302 @default.
- W2904188519 hasConcept C185429906 @default.
- W2904188519 hasConcept C18653775 @default.
- W2904188519 hasConcept C190470478 @default.
- W2904188519 hasConcept C2776145971 @default.
- W2904188519 hasConcept C33923547 @default.
- W2904188519 hasConcept C36503486 @default.
- W2904188519 hasConcept C37914503 @default.
- W2904188519 hasConcept C41008148 @default.
- W2904188519 hasConcept C98045186 @default.
- W2904188519 hasConceptScore W2904188519C105795698 @default.
- W2904188519 hasConceptScore W2904188519C111919701 @default.
- W2904188519 hasConceptScore W2904188519C119857082 @default.
- W2904188519 hasConceptScore W2904188519C134306372 @default.
- W2904188519 hasConceptScore W2904188519C154945302 @default.
- W2904188519 hasConceptScore W2904188519C185429906 @default.
- W2904188519 hasConceptScore W2904188519C18653775 @default.
- W2904188519 hasConceptScore W2904188519C190470478 @default.
- W2904188519 hasConceptScore W2904188519C2776145971 @default.
- W2904188519 hasConceptScore W2904188519C33923547 @default.
- W2904188519 hasConceptScore W2904188519C36503486 @default.
- W2904188519 hasConceptScore W2904188519C37914503 @default.
- W2904188519 hasConceptScore W2904188519C41008148 @default.
- W2904188519 hasConceptScore W2904188519C98045186 @default.
- W2904188519 hasOpenAccess W2904188519 @default.
- W2904188519 hasRelatedWork W1504988876 @default.
- W2904188519 hasRelatedWork W2149754870 @default.
- W2904188519 hasRelatedWork W2795156714 @default.
- W2904188519 hasRelatedWork W2885707361 @default.
- W2904188519 hasRelatedWork W2947782760 @default.
- W2904188519 hasRelatedWork W2952428244 @default.
- W2904188519 hasRelatedWork W2978767981 @default.
- W2904188519 hasRelatedWork W3007404550 @default.
- W2904188519 hasRelatedWork W3033230862 @default.
- W2904188519 hasRelatedWork W3034348890 @default.
- W2904188519 hasRelatedWork W3083666754 @default.
- W2904188519 hasRelatedWork W3101459668 @default.
- W2904188519 hasRelatedWork W3124256299 @default.
- W2904188519 hasRelatedWork W3125249653 @default.