Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904192190> ?p ?o ?g. }
- W2904192190 endingPage "60" @default.
- W2904192190 startingPage "51" @default.
- W2904192190 abstract "In this paper, we propose a new deep learning model named heterogeneous part-based deep network for person re-identification in camera networks, which simultaneously learns the alignment and discrimination for parts of pedestrian images. Concretely, several parts are obtained through the uniform partition on the convolutional layer for each pedestrian image. Then, we present part-aligned distances to perform alignment by searching the shortest local distances between image parts in a certain range. Meanwhile, we utilize the batch hard triplet loss and cross-entropy loss to learn more discriminative part-based features in different aspects. Experiments are conducted on three challenging datasets, Market-1501, CUHK03, and DukeMTMC-reID, and we achieve 94.0%, 64.3%, and 83.6% rank-1 accuracy and 81.2%, 58.2%, and 68.0% mAP, outperforming the state-of-the-art methods by a large margin." @default.
- W2904192190 created "2018-12-22" @default.
- W2904192190 creator A5021269788 @default.
- W2904192190 creator A5033173193 @default.
- W2904192190 date "2020-02-01" @default.
- W2904192190 modified "2023-10-17" @default.
- W2904192190 title "Person Re-Identification Based on Heterogeneous Part-Based Deep Network in Camera Networks" @default.
- W2904192190 cites W1518138188 @default.
- W2904192190 cites W1928419358 @default.
- W2904192190 cites W1949591461 @default.
- W2904192190 cites W1971955426 @default.
- W2904192190 cites W1979260620 @default.
- W2904192190 cites W1982068528 @default.
- W2904192190 cites W1982925187 @default.
- W2904192190 cites W2009907187 @default.
- W2904192190 cites W2027708244 @default.
- W2904192190 cites W2068042582 @default.
- W2904192190 cites W2079972027 @default.
- W2904192190 cites W2108598243 @default.
- W2904192190 cites W2129789791 @default.
- W2904192190 cites W2151873133 @default.
- W2904192190 cites W2159001013 @default.
- W2904192190 cites W2166312020 @default.
- W2904192190 cites W2194775991 @default.
- W2904192190 cites W2201508557 @default.
- W2904192190 cites W2204750386 @default.
- W2904192190 cites W2300840837 @default.
- W2904192190 cites W2342956157 @default.
- W2904192190 cites W2414767909 @default.
- W2904192190 cites W2467139031 @default.
- W2904192190 cites W2471048925 @default.
- W2904192190 cites W2502225121 @default.
- W2904192190 cites W2583147637 @default.
- W2904192190 cites W2584637367 @default.
- W2904192190 cites W2585635281 @default.
- W2904192190 cites W2608456260 @default.
- W2904192190 cites W2618530766 @default.
- W2904192190 cites W2620998106 @default.
- W2904192190 cites W2625961748 @default.
- W2904192190 cites W2736410039 @default.
- W2904192190 cites W2755066373 @default.
- W2904192190 cites W2768610172 @default.
- W2904192190 cites W2779142853 @default.
- W2904192190 cites W2803908109 @default.
- W2904192190 cites W2963365374 @default.
- W2904192190 cites W2963383990 @default.
- W2904192190 cites W2963438548 @default.
- W2904192190 cites W2963574614 @default.
- W2904192190 cites W2963690547 @default.
- W2904192190 cites W2963975998 @default.
- W2904192190 cites W2964130064 @default.
- W2904192190 cites W2964289004 @default.
- W2904192190 cites W2964304299 @default.
- W2904192190 cites W2964346648 @default.
- W2904192190 cites W3098711604 @default.
- W2904192190 cites W3100555577 @default.
- W2904192190 cites W589973208 @default.
- W2904192190 doi "https://doi.org/10.1109/tetci.2018.2883348" @default.
- W2904192190 hasPublicationYear "2020" @default.
- W2904192190 type Work @default.
- W2904192190 sameAs 2904192190 @default.
- W2904192190 citedByCount "7" @default.
- W2904192190 countsByYear W29041921902020 @default.
- W2904192190 countsByYear W29041921902021 @default.
- W2904192190 countsByYear W29041921902022 @default.
- W2904192190 countsByYear W29041921902023 @default.
- W2904192190 crossrefType "journal-article" @default.
- W2904192190 hasAuthorship W2904192190A5021269788 @default.
- W2904192190 hasAuthorship W2904192190A5033173193 @default.
- W2904192190 hasConcept C108583219 @default.
- W2904192190 hasConcept C114614502 @default.
- W2904192190 hasConcept C115961682 @default.
- W2904192190 hasConcept C116834253 @default.
- W2904192190 hasConcept C119857082 @default.
- W2904192190 hasConcept C127413603 @default.
- W2904192190 hasConcept C153180895 @default.
- W2904192190 hasConcept C154945302 @default.
- W2904192190 hasConcept C22212356 @default.
- W2904192190 hasConcept C2777113093 @default.
- W2904192190 hasConcept C31972630 @default.
- W2904192190 hasConcept C33923547 @default.
- W2904192190 hasConcept C41008148 @default.
- W2904192190 hasConcept C42812 @default.
- W2904192190 hasConcept C59822182 @default.
- W2904192190 hasConcept C774472 @default.
- W2904192190 hasConcept C81363708 @default.
- W2904192190 hasConcept C86803240 @default.
- W2904192190 hasConcept C97931131 @default.
- W2904192190 hasConceptScore W2904192190C108583219 @default.
- W2904192190 hasConceptScore W2904192190C114614502 @default.
- W2904192190 hasConceptScore W2904192190C115961682 @default.
- W2904192190 hasConceptScore W2904192190C116834253 @default.
- W2904192190 hasConceptScore W2904192190C119857082 @default.
- W2904192190 hasConceptScore W2904192190C127413603 @default.
- W2904192190 hasConceptScore W2904192190C153180895 @default.
- W2904192190 hasConceptScore W2904192190C154945302 @default.
- W2904192190 hasConceptScore W2904192190C22212356 @default.
- W2904192190 hasConceptScore W2904192190C2777113093 @default.