Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904198217> ?p ?o ?g. }
- W2904198217 endingPage "375" @default.
- W2904198217 startingPage "360" @default.
- W2904198217 abstract "The vast majority of meta-analyses uses summary/aggregate data retrieved from published studies in contrast to meta-analysis of individual participant data (IPD). When the outcome is continuous and IPD are available, linear mixed modelling methods can be employed in a one-stage approach. This allows for flexible modelling of within-study variability and between-study effects and accounts for the uncertainty in the estimates of between-study and within-study residual variances. However, IPD are seldom available. For the normal outcome case, we present a method to generate pseudo IPD from aggregate data using group mean, standard deviation, and sample sizes within each study, ie, the sufficient statistics. Analyzing the pseudo IPD with likelihood-based methods yields identical results as the analysis of the unknown true IPD. The advantage of this method is that we can employ the mixed modelling framework, implemented in many statistical software packages, and explore modelling options suitable for IPD, such as fixed study-specific intercepts and fixed treatment effect model, fixed study-specific intercepts and random treatment effects, and both random study and treatment effects and different options to model the within-study residual variance. This allows choosing the most realistic (or potentially complex) residual variance structures across studies, instead of using an overly simple structure. We demonstrate these methods in two empirical datasets in Alzheimer disease, where an extensive model, assuming all within-study variances to be free, fitted considerably better. In simulations, the pseudo IPD approach showed adequate coverage probability, because it accounted for small sample effects." @default.
- W2904198217 created "2018-12-22" @default.
- W2904198217 creator A5039446382 @default.
- W2904198217 creator A5069014026 @default.
- W2904198217 creator A5078835349 @default.
- W2904198217 creator A5080884343 @default.
- W2904198217 date "2019-01-08" @default.
- W2904198217 modified "2023-10-15" @default.
- W2904198217 title "One‐stage random effects meta‐analysis using linear mixed models for aggregate continuous outcome data" @default.
- W2904198217 cites W1841651683 @default.
- W2904198217 cites W1958895821 @default.
- W2904198217 cites W1982265233 @default.
- W2904198217 cites W1982967337 @default.
- W2904198217 cites W2016832451 @default.
- W2904198217 cites W2018696687 @default.
- W2904198217 cites W2036756589 @default.
- W2904198217 cites W2046226721 @default.
- W2904198217 cites W2046421382 @default.
- W2904198217 cites W2056083953 @default.
- W2904198217 cites W2058803950 @default.
- W2904198217 cites W2099610513 @default.
- W2904198217 cites W2107328434 @default.
- W2904198217 cites W2108116635 @default.
- W2904198217 cites W2113178124 @default.
- W2904198217 cites W2126602143 @default.
- W2904198217 cites W2126930838 @default.
- W2904198217 cites W2128640268 @default.
- W2904198217 cites W2128841980 @default.
- W2904198217 cites W2131455139 @default.
- W2904198217 cites W2139066039 @default.
- W2904198217 cites W2139168999 @default.
- W2904198217 cites W2140604743 @default.
- W2904198217 cites W2142614828 @default.
- W2904198217 cites W2148361291 @default.
- W2904198217 cites W2158196600 @default.
- W2904198217 cites W2166546590 @default.
- W2904198217 cites W2533466707 @default.
- W2904198217 cites W2783147278 @default.
- W2904198217 cites W2886356254 @default.
- W2904198217 cites W2904198217 @default.
- W2904198217 doi "https://doi.org/10.1002/jrsm.1331" @default.
- W2904198217 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6767371" @default.
- W2904198217 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30523676" @default.
- W2904198217 hasPublicationYear "2019" @default.
- W2904198217 type Work @default.
- W2904198217 sameAs 2904198217 @default.
- W2904198217 citedByCount "14" @default.
- W2904198217 countsByYear W29041982172020 @default.
- W2904198217 countsByYear W29041982172021 @default.
- W2904198217 countsByYear W29041982172022 @default.
- W2904198217 countsByYear W29041982172023 @default.
- W2904198217 crossrefType "journal-article" @default.
- W2904198217 hasAuthorship W2904198217A5039446382 @default.
- W2904198217 hasAuthorship W2904198217A5069014026 @default.
- W2904198217 hasAuthorship W2904198217A5078835349 @default.
- W2904198217 hasAuthorship W2904198217A5080884343 @default.
- W2904198217 hasBestOaLocation W29041982171 @default.
- W2904198217 hasConcept C105795698 @default.
- W2904198217 hasConcept C11413529 @default.
- W2904198217 hasConcept C121955636 @default.
- W2904198217 hasConcept C126322002 @default.
- W2904198217 hasConcept C129848803 @default.
- W2904198217 hasConcept C144133560 @default.
- W2904198217 hasConcept C144237770 @default.
- W2904198217 hasConcept C148220186 @default.
- W2904198217 hasConcept C149782125 @default.
- W2904198217 hasConcept C153720581 @default.
- W2904198217 hasConcept C154945302 @default.
- W2904198217 hasConcept C155512373 @default.
- W2904198217 hasConcept C159985019 @default.
- W2904198217 hasConcept C16012445 @default.
- W2904198217 hasConcept C168743327 @default.
- W2904198217 hasConcept C192562407 @default.
- W2904198217 hasConcept C196083921 @default.
- W2904198217 hasConcept C2776502983 @default.
- W2904198217 hasConcept C2778058735 @default.
- W2904198217 hasConcept C33923547 @default.
- W2904198217 hasConcept C41008148 @default.
- W2904198217 hasConcept C4679612 @default.
- W2904198217 hasConcept C71924100 @default.
- W2904198217 hasConcept C95190672 @default.
- W2904198217 hasConceptScore W2904198217C105795698 @default.
- W2904198217 hasConceptScore W2904198217C11413529 @default.
- W2904198217 hasConceptScore W2904198217C121955636 @default.
- W2904198217 hasConceptScore W2904198217C126322002 @default.
- W2904198217 hasConceptScore W2904198217C129848803 @default.
- W2904198217 hasConceptScore W2904198217C144133560 @default.
- W2904198217 hasConceptScore W2904198217C144237770 @default.
- W2904198217 hasConceptScore W2904198217C148220186 @default.
- W2904198217 hasConceptScore W2904198217C149782125 @default.
- W2904198217 hasConceptScore W2904198217C153720581 @default.
- W2904198217 hasConceptScore W2904198217C154945302 @default.
- W2904198217 hasConceptScore W2904198217C155512373 @default.
- W2904198217 hasConceptScore W2904198217C159985019 @default.
- W2904198217 hasConceptScore W2904198217C16012445 @default.
- W2904198217 hasConceptScore W2904198217C168743327 @default.
- W2904198217 hasConceptScore W2904198217C192562407 @default.
- W2904198217 hasConceptScore W2904198217C196083921 @default.