Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904200531> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2904200531 abstract "With the popularity of smartphones and the development of navigation sensor technology, smartphones are expected to serve as unified platform for ubiquitous location services. In land vehicle navigation application, a GPS receiver equipped smartphone can be used for several location-based services. However, short-term GPS outage may occur in urban environment when crossing tunnels or viaducts. An ideal solution could be a combination of GPS and low cost inertial measurement sensors using GPS/SINS integrated navigation algorithm. Traditional GPS/SINS integrated navigation algorithms are based on Kalman type filter with Strap-down Inertial Navigation error propagation model and inertial sensor error model as the system model. However the high uncertainties of nonlinear drift in low cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement sensors make the errors are difficult to characterize. It is still a challenge to develop an optimal real-time integration algorithm that can maintain required system performance during GPS short-term outage (maximum 30s) for low cost sensors on smartphone. In this paper, we proposed a reliable hybrid positioning method by combining the advantages of belief propagation (BP) and structure learning in the probabilistic graphical model, which addresses GPS outages and uncertain nonlinear drift of MEMS INS simultaneously. The state estimation problem of integrated navigation was formulated in the framework of factor graph. A factor graph is a probabilistic graphical model which combines the graph theory and probability theory to give a multivariate statistical modeling. An unscented transform based belief propagation algorithm was proposed to address multi-rate measurement and partial nonlinear system model. This factor graph based state estimation was augmented by another adaptive probabilistic graphical model which was used to model position error induced by MEMS IMU sensors nonlinear drift. This architecture works in learning mode when GPS measurement is available and works in prediction mode when GPS measurement is in short-term outage. A road-test experiment in a land vehicle was taken in order to verify the method proposed in this paper." @default.
- W2904200531 created "2018-12-22" @default.
- W2904200531 creator A5006651636 @default.
- W2904200531 creator A5055383453 @default.
- W2904200531 creator A5055558224 @default.
- W2904200531 date "2018-10-26" @default.
- W2904200531 modified "2023-09-27" @default.
- W2904200531 title "A Probabilistic Graphic Model based GPS/SINS Integration Algorithm for Low-cost Sensors on Smartphone" @default.
- W2904200531 doi "https://doi.org/10.33012/2018.15836" @default.
- W2904200531 hasPublicationYear "2018" @default.
- W2904200531 type Work @default.
- W2904200531 sameAs 2904200531 @default.
- W2904200531 citedByCount "0" @default.
- W2904200531 crossrefType "proceedings-article" @default.
- W2904200531 hasAuthorship W2904200531A5006651636 @default.
- W2904200531 hasAuthorship W2904200531A5055383453 @default.
- W2904200531 hasAuthorship W2904200531A5055558224 @default.
- W2904200531 hasConcept C11413529 @default.
- W2904200531 hasConcept C121332964 @default.
- W2904200531 hasConcept C128651787 @default.
- W2904200531 hasConcept C154945302 @default.
- W2904200531 hasConcept C157286648 @default.
- W2904200531 hasConcept C159246509 @default.
- W2904200531 hasConcept C173386949 @default.
- W2904200531 hasConcept C193183557 @default.
- W2904200531 hasConcept C198613851 @default.
- W2904200531 hasConcept C2777891301 @default.
- W2904200531 hasConcept C41008148 @default.
- W2904200531 hasConcept C49937458 @default.
- W2904200531 hasConcept C57273362 @default.
- W2904200531 hasConcept C60229501 @default.
- W2904200531 hasConcept C62520636 @default.
- W2904200531 hasConcept C76155785 @default.
- W2904200531 hasConcept C79061980 @default.
- W2904200531 hasConcept C79403827 @default.
- W2904200531 hasConceptScore W2904200531C11413529 @default.
- W2904200531 hasConceptScore W2904200531C121332964 @default.
- W2904200531 hasConceptScore W2904200531C128651787 @default.
- W2904200531 hasConceptScore W2904200531C154945302 @default.
- W2904200531 hasConceptScore W2904200531C157286648 @default.
- W2904200531 hasConceptScore W2904200531C159246509 @default.
- W2904200531 hasConceptScore W2904200531C173386949 @default.
- W2904200531 hasConceptScore W2904200531C193183557 @default.
- W2904200531 hasConceptScore W2904200531C198613851 @default.
- W2904200531 hasConceptScore W2904200531C2777891301 @default.
- W2904200531 hasConceptScore W2904200531C41008148 @default.
- W2904200531 hasConceptScore W2904200531C49937458 @default.
- W2904200531 hasConceptScore W2904200531C57273362 @default.
- W2904200531 hasConceptScore W2904200531C60229501 @default.
- W2904200531 hasConceptScore W2904200531C62520636 @default.
- W2904200531 hasConceptScore W2904200531C76155785 @default.
- W2904200531 hasConceptScore W2904200531C79061980 @default.
- W2904200531 hasConceptScore W2904200531C79403827 @default.
- W2904200531 hasLocation W29042005311 @default.
- W2904200531 hasOpenAccess W2904200531 @default.
- W2904200531 hasPrimaryLocation W29042005311 @default.
- W2904200531 hasRelatedWork W1533336191 @default.
- W2904200531 hasRelatedWork W1539600726 @default.
- W2904200531 hasRelatedWork W2120126156 @default.
- W2904200531 hasRelatedWork W2356504737 @default.
- W2904200531 hasRelatedWork W2379532991 @default.
- W2904200531 hasRelatedWork W2389737445 @default.
- W2904200531 hasRelatedWork W2528913720 @default.
- W2904200531 hasRelatedWork W285138270 @default.
- W2904200531 hasRelatedWork W2904200531 @default.
- W2904200531 hasRelatedWork W2758811719 @default.
- W2904200531 isParatext "false" @default.
- W2904200531 isRetracted "false" @default.
- W2904200531 magId "2904200531" @default.
- W2904200531 workType "article" @default.