Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904212734> ?p ?o ?g. }
- W2904212734 abstract "Abstract Natural products represent a rich reservoir of small molecule drug candidates utilized as antimicrobial drugs, anticancer therapies, and immunomodulatory agents. These molecules are microbial secondary metabolites synthesized by co-localized genes termed Biosynthetic Gene Clusters (BGCs). The increase in full microbial genomes and similar resources has led to development of BGC prediction algorithms, although their precision and ability to identify novel BGC classes could be improved. Here we present a deep learning strategy (DeepBGC) that offers more accurate BGC identification and an improved ability to extrapolate and identify novel BGC classes compared to existing tools. We supplemented this with downstream random forest classifiers that accurately predicted BGC product classes and potential chemical activity. Application of DeepBGC to bacterial genomes uncovered previously undetectable BGCs that may code for natural products with novel biologic activities. The improved accuracy and classification ability of DeepBGC represents a significant step forward for in-silico BGC identification." @default.
- W2904212734 created "2018-12-22" @default.
- W2904212734 creator A5016775662 @default.
- W2904212734 creator A5023486283 @default.
- W2904212734 creator A5024958116 @default.
- W2904212734 creator A5026545442 @default.
- W2904212734 creator A5030188830 @default.
- W2904212734 creator A5035221639 @default.
- W2904212734 creator A5035790499 @default.
- W2904212734 creator A5040163724 @default.
- W2904212734 creator A5054324582 @default.
- W2904212734 creator A5058308788 @default.
- W2904212734 creator A5074567563 @default.
- W2904212734 creator A5084406166 @default.
- W2904212734 creator A5086333418 @default.
- W2904212734 creator A5088571596 @default.
- W2904212734 creator A5091288349 @default.
- W2904212734 date "2018-12-18" @default.
- W2904212734 modified "2023-09-26" @default.
- W2904212734 title "A Deep Learning Genome-Mining Strategy Improves Biosynthetic Gene Cluster Prediction" @default.
- W2904212734 cites W1202680985 @default.
- W2904212734 cites W1501531009 @default.
- W2904212734 cites W1972203402 @default.
- W2904212734 cites W1980530950 @default.
- W2904212734 cites W1992716708 @default.
- W2904212734 cites W2009257824 @default.
- W2904212734 cites W2009898018 @default.
- W2904212734 cites W2064675550 @default.
- W2904212734 cites W2077514957 @default.
- W2904212734 cites W2082418604 @default.
- W2904212734 cites W2088226047 @default.
- W2904212734 cites W2094402554 @default.
- W2904212734 cites W2107986672 @default.
- W2904212734 cites W2110363791 @default.
- W2904212734 cites W2118119639 @default.
- W2904212734 cites W2120395184 @default.
- W2904212734 cites W2131774270 @default.
- W2904212734 cites W2135639274 @default.
- W2904212734 cites W2135967789 @default.
- W2904212734 cites W2143485490 @default.
- W2904212734 cites W2146157756 @default.
- W2904212734 cites W2151831732 @default.
- W2904212734 cites W2156226201 @default.
- W2904212734 cites W2161886128 @default.
- W2904212734 cites W2173732482 @default.
- W2904212734 cites W2185500533 @default.
- W2904212734 cites W2187341651 @default.
- W2904212734 cites W2187810943 @default.
- W2904212734 cites W2224056471 @default.
- W2904212734 cites W2410975458 @default.
- W2904212734 cites W2463736536 @default.
- W2904212734 cites W2608736608 @default.
- W2904212734 cites W2800388620 @default.
- W2904212734 cites W2801248003 @default.
- W2904212734 cites W2919115771 @default.
- W2904212734 cites W2950436573 @default.
- W2904212734 cites W4236236547 @default.
- W2904212734 cites W4236767828 @default.
- W2904212734 doi "https://doi.org/10.1101/500694" @default.
- W2904212734 hasPublicationYear "2018" @default.
- W2904212734 type Work @default.
- W2904212734 sameAs 2904212734 @default.
- W2904212734 citedByCount "3" @default.
- W2904212734 countsByYear W29042127342021 @default.
- W2904212734 countsByYear W29042127342023 @default.
- W2904212734 crossrefType "posted-content" @default.
- W2904212734 hasAuthorship W2904212734A5016775662 @default.
- W2904212734 hasAuthorship W2904212734A5023486283 @default.
- W2904212734 hasAuthorship W2904212734A5024958116 @default.
- W2904212734 hasAuthorship W2904212734A5026545442 @default.
- W2904212734 hasAuthorship W2904212734A5030188830 @default.
- W2904212734 hasAuthorship W2904212734A5035221639 @default.
- W2904212734 hasAuthorship W2904212734A5035790499 @default.
- W2904212734 hasAuthorship W2904212734A5040163724 @default.
- W2904212734 hasAuthorship W2904212734A5054324582 @default.
- W2904212734 hasAuthorship W2904212734A5058308788 @default.
- W2904212734 hasAuthorship W2904212734A5074567563 @default.
- W2904212734 hasAuthorship W2904212734A5084406166 @default.
- W2904212734 hasAuthorship W2904212734A5086333418 @default.
- W2904212734 hasAuthorship W2904212734A5088571596 @default.
- W2904212734 hasAuthorship W2904212734A5091288349 @default.
- W2904212734 hasBestOaLocation W29042127341 @default.
- W2904212734 hasConcept C104317684 @default.
- W2904212734 hasConcept C116834253 @default.
- W2904212734 hasConcept C141231307 @default.
- W2904212734 hasConcept C18903297 @default.
- W2904212734 hasConcept C2775905019 @default.
- W2904212734 hasConcept C2779396153 @default.
- W2904212734 hasConcept C2989108626 @default.
- W2904212734 hasConcept C36857842 @default.
- W2904212734 hasConcept C54355233 @default.
- W2904212734 hasConcept C55493867 @default.
- W2904212734 hasConcept C60644358 @default.
- W2904212734 hasConcept C68762167 @default.
- W2904212734 hasConcept C70721500 @default.
- W2904212734 hasConcept C74187038 @default.
- W2904212734 hasConcept C86803240 @default.
- W2904212734 hasConceptScore W2904212734C104317684 @default.
- W2904212734 hasConceptScore W2904212734C116834253 @default.
- W2904212734 hasConceptScore W2904212734C141231307 @default.