Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904214710> ?p ?o ?g. }
- W2904214710 endingPage "353" @default.
- W2904214710 startingPage "344" @default.
- W2904214710 abstract "Rationale & ObjectiveTraditional risk estimates for atherosclerotic vascular disease (ASVD) and death may not perform optimally in the setting of chronic kidney disease (CKD). We sought to determine whether the addition of measures of inflammation and kidney function to traditional estimation tools improves prediction of these events in a diverse cohort of patients with CKD.Study DesignObservational cohort study.Setting & Participants2,399 Chronic Renal Insufficiency Cohort (CRIC) Study participants without a history of cardiovascular disease at study entry.PredictorsBaseline plasma levels of biomarkers of inflammation (interleukin 1β [IL-1β], IL-1 receptor antagonist, IL-6, tumor necrosis factor α [TNF-α], transforming growth factor β, high-sensitivity C-reactive protein, fibrinogen, and serum albumin), measures of kidney function (estimated glomerular filtration rate [eGFR] and albuminuria), and the Pooled Cohort Equation probability (PCEP) estimate.OutcomesComposite of ASVD events (incident myocardial infarction, peripheral arterial disease, and stroke) and death.Analytical ApproachCox proportional hazard models adjusted for PCEP estimates, albuminuria, and eGFR.ResultsDuring a median follow-up of 7.3 years, 86, 61, 48, and 323 participants experienced myocardial infarction, peripheral arterial disease, stroke, or death, respectively. The 1-decile greater levels of IL-6 (adjusted HR [aHR], 1.12; 95% CI, 1.08-1.16; P < 0.001), TNF-α (aHR, 1.09; 95% CI, 1.05-1.13; P < 0.001), fibrinogen (aHR, 1.07; 95% CI, 1.03-1.11; P < 0.001), and serum albumin (aHR, 0.96; 95% CI, 0.93-0.99; P < 0.002) were independently associated with the composite ASVD-death outcome. A composite inflammation score (CIS) incorporating these 4 biomarkers was associated with a graded increase in risk for the composite outcome. The incidence of ASVD-death increased across the quintiles of risk derived from PCEP, kidney function, and CIS. The addition of eGFR, albuminuria, and CIS to PCEP improved (P = 0.003) the area under the receiver operating characteristic curve for the composite outcome from 0.68 (95% CI, 0.66-0.71) to 0.73 (95% CI, 0.71-0.76).LimitationsData for cardiovascular death were not available.ConclusionsBiomarkers of inflammation and measures of kidney function are independently associated with incident ASVD events and death in patients with CKD. Traditional cardiovascular risk estimates could be improved by adding markers of inflammation and measures of kidney function. Traditional risk estimates for atherosclerotic vascular disease (ASVD) and death may not perform optimally in the setting of chronic kidney disease (CKD). We sought to determine whether the addition of measures of inflammation and kidney function to traditional estimation tools improves prediction of these events in a diverse cohort of patients with CKD. Observational cohort study. 2,399 Chronic Renal Insufficiency Cohort (CRIC) Study participants without a history of cardiovascular disease at study entry. Baseline plasma levels of biomarkers of inflammation (interleukin 1β [IL-1β], IL-1 receptor antagonist, IL-6, tumor necrosis factor α [TNF-α], transforming growth factor β, high-sensitivity C-reactive protein, fibrinogen, and serum albumin), measures of kidney function (estimated glomerular filtration rate [eGFR] and albuminuria), and the Pooled Cohort Equation probability (PCEP) estimate. Composite of ASVD events (incident myocardial infarction, peripheral arterial disease, and stroke) and death. Cox proportional hazard models adjusted for PCEP estimates, albuminuria, and eGFR. During a median follow-up of 7.3 years, 86, 61, 48, and 323 participants experienced myocardial infarction, peripheral arterial disease, stroke, or death, respectively. The 1-decile greater levels of IL-6 (adjusted HR [aHR], 1.12; 95% CI, 1.08-1.16; P < 0.001), TNF-α (aHR, 1.09; 95% CI, 1.05-1.13; P < 0.001), fibrinogen (aHR, 1.07; 95% CI, 1.03-1.11; P < 0.001), and serum albumin (aHR, 0.96; 95% CI, 0.93-0.99; P < 0.002) were independently associated with the composite ASVD-death outcome. A composite inflammation score (CIS) incorporating these 4 biomarkers was associated with a graded increase in risk for the composite outcome. The incidence of ASVD-death increased across the quintiles of risk derived from PCEP, kidney function, and CIS. The addition of eGFR, albuminuria, and CIS to PCEP improved (P = 0.003) the area under the receiver operating characteristic curve for the composite outcome from 0.68 (95% CI, 0.66-0.71) to 0.73 (95% CI, 0.71-0.76). Data for cardiovascular death were not available. Biomarkers of inflammation and measures of kidney function are independently associated with incident ASVD events and death in patients with CKD. Traditional cardiovascular risk estimates could be improved by adding markers of inflammation and measures of kidney function." @default.
- W2904214710 created "2018-12-22" @default.
- W2904214710 creator A5005841132 @default.
- W2904214710 creator A5008906136 @default.
- W2904214710 creator A5009170752 @default.
- W2904214710 creator A5015656712 @default.
- W2904214710 creator A5016894949 @default.
- W2904214710 creator A5018412357 @default.
- W2904214710 creator A5022841543 @default.
- W2904214710 creator A5026776682 @default.
- W2904214710 creator A5026846209 @default.
- W2904214710 creator A5037132477 @default.
- W2904214710 creator A5040913447 @default.
- W2904214710 creator A5047317486 @default.
- W2904214710 creator A5048680434 @default.
- W2904214710 creator A5049261258 @default.
- W2904214710 creator A5058217417 @default.
- W2904214710 creator A5065023946 @default.
- W2904214710 creator A5067348406 @default.
- W2904214710 creator A5068265000 @default.
- W2904214710 creator A5075115334 @default.
- W2904214710 creator A5079665496 @default.
- W2904214710 creator A5086744652 @default.
- W2904214710 creator A5090601106 @default.
- W2904214710 date "2019-03-01" @default.
- W2904214710 modified "2023-10-16" @default.
- W2904214710 title "Use of Measures of Inflammation and Kidney Function for Prediction of Atherosclerotic Vascular Disease Events and Death in Patients With CKD: Findings From the CRIC Study" @default.
- W2904214710 cites W1585709511 @default.
- W2904214710 cites W191300012 @default.
- W2904214710 cites W1975316251 @default.
- W2904214710 cites W1982392960 @default.
- W2904214710 cites W1982966161 @default.
- W2904214710 cites W2001271520 @default.
- W2904214710 cites W2022807857 @default.
- W2904214710 cites W2022953931 @default.
- W2904214710 cites W2038981426 @default.
- W2904214710 cites W2068949553 @default.
- W2904214710 cites W2070093958 @default.
- W2904214710 cites W2081318353 @default.
- W2904214710 cites W2095921420 @default.
- W2904214710 cites W2096849439 @default.
- W2904214710 cites W2101096759 @default.
- W2904214710 cites W2109546786 @default.
- W2904214710 cites W2111329158 @default.
- W2904214710 cites W2114659478 @default.
- W2904214710 cites W2117121624 @default.
- W2904214710 cites W2120309176 @default.
- W2904214710 cites W2133211347 @default.
- W2904214710 cites W2133808321 @default.
- W2904214710 cites W2148983669 @default.
- W2904214710 cites W2156121263 @default.
- W2904214710 cites W2160134719 @default.
- W2904214710 cites W2160812379 @default.
- W2904214710 cites W2160966717 @default.
- W2904214710 cites W2163684054 @default.
- W2904214710 cites W2168536722 @default.
- W2904214710 cites W2170412069 @default.
- W2904214710 cites W2170893247 @default.
- W2904214710 cites W2324841714 @default.
- W2904214710 cites W2462073489 @default.
- W2904214710 cites W2475261460 @default.
- W2904214710 cites W2520746487 @default.
- W2904214710 cites W2742835189 @default.
- W2904214710 cites W3001764054 @default.
- W2904214710 cites W59988106 @default.
- W2904214710 doi "https://doi.org/10.1053/j.ajkd.2018.09.012" @default.
- W2904214710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6812505" @default.
- W2904214710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30545708" @default.
- W2904214710 hasPublicationYear "2019" @default.
- W2904214710 type Work @default.
- W2904214710 sameAs 2904214710 @default.
- W2904214710 citedByCount "76" @default.
- W2904214710 countsByYear W29042147102019 @default.
- W2904214710 countsByYear W29042147102020 @default.
- W2904214710 countsByYear W29042147102021 @default.
- W2904214710 countsByYear W29042147102022 @default.
- W2904214710 countsByYear W29042147102023 @default.
- W2904214710 crossrefType "journal-article" @default.
- W2904214710 hasAuthorship W2904214710A5005841132 @default.
- W2904214710 hasAuthorship W2904214710A5008906136 @default.
- W2904214710 hasAuthorship W2904214710A5009170752 @default.
- W2904214710 hasAuthorship W2904214710A5015656712 @default.
- W2904214710 hasAuthorship W2904214710A5016894949 @default.
- W2904214710 hasAuthorship W2904214710A5018412357 @default.
- W2904214710 hasAuthorship W2904214710A5022841543 @default.
- W2904214710 hasAuthorship W2904214710A5026776682 @default.
- W2904214710 hasAuthorship W2904214710A5026846209 @default.
- W2904214710 hasAuthorship W2904214710A5037132477 @default.
- W2904214710 hasAuthorship W2904214710A5040913447 @default.
- W2904214710 hasAuthorship W2904214710A5047317486 @default.
- W2904214710 hasAuthorship W2904214710A5048680434 @default.
- W2904214710 hasAuthorship W2904214710A5049261258 @default.
- W2904214710 hasAuthorship W2904214710A5058217417 @default.
- W2904214710 hasAuthorship W2904214710A5065023946 @default.
- W2904214710 hasAuthorship W2904214710A5067348406 @default.
- W2904214710 hasAuthorship W2904214710A5068265000 @default.
- W2904214710 hasAuthorship W2904214710A5075115334 @default.
- W2904214710 hasAuthorship W2904214710A5079665496 @default.