Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904217677> ?p ?o ?g. }
- W2904217677 abstract "Value of Information measures quantify the economic benefit of obtaining additional information about the underlying model parameters of a health economic model. Theoretically, these measures can be used to understand the impact of model uncertainty on health economic decision making. Specifically, the Expected Value of Partial Perfect Information (EVPPI) can be used to determine which model parameters are driving decision uncertainty. This is useful as a tool to perform sensitivity analysis to model assumptions and to determine where future research should be targeted to reduce model uncertainty. Even more importantly, the Value of Information measure known as the Expected Value of Sample Information (EVSI) quantifies the economic value of undertaking a proposed scheme of research. This has clear applications in research prioritisation and trial design, where economically valuable studies should be funded. Despite these useful properties, these two measures have rarely been used in practice due to the large computational burden associated with estimating them in practical scenarios. Therefore, this thesis develops novel methodology to allow these two measures to be calculated in practice. For the EVPPI, the method is based on non-parametric regression using the fast Bayesian computation method INLA (Integrated Nested Laplace Approximations). This novel calculation method is fast, especially for high dimensional problems, greatly reducing the computational time for calculating the EVPPI in many practical settings. For the EVSI, the approximation is based on Moment Matching and using properties of the distribution of the preposterior mean. An extension to this method also uses Bayesian non-linear regression to calculate the EVSI quickly across different trial designs. All these methods have been developed and implemented in R packages to aid implementation by practitioners and allow Value of Information measures to inform both health economic evaluations and trial design." @default.
- W2904217677 created "2018-12-22" @default.
- W2904217677 creator A5045881566 @default.
- W2904217677 date "2018-06-28" @default.
- W2904217677 modified "2023-09-28" @default.
- W2904217677 title "Bayesian computations for Value of Information measures using Gaussian processes, INLA and Moment Matching" @default.
- W2904217677 cites W1426778341 @default.
- W2904217677 cites W1479881385 @default.
- W2904217677 cites W1970673798 @default.
- W2904217677 cites W1973749534 @default.
- W2904217677 cites W1992802649 @default.
- W2904217677 cites W1997794981 @default.
- W2904217677 cites W2019785035 @default.
- W2904217677 cites W2036721060 @default.
- W2904217677 cites W2046808071 @default.
- W2904217677 cites W2049414988 @default.
- W2904217677 cites W2069995517 @default.
- W2904217677 cites W2118088606 @default.
- W2904217677 cites W2119160928 @default.
- W2904217677 cites W2140011409 @default.
- W2904217677 cites W2140308441 @default.
- W2904217677 cites W2144898279 @default.
- W2904217677 cites W2474139321 @default.
- W2904217677 cites W2964297483 @default.
- W2904217677 cites W3122426397 @default.
- W2904217677 cites W376156748 @default.
- W2904217677 hasPublicationYear "2018" @default.
- W2904217677 type Work @default.
- W2904217677 sameAs 2904217677 @default.
- W2904217677 citedByCount "0" @default.
- W2904217677 crossrefType "dissertation" @default.
- W2904217677 hasAuthorship W2904217677A5045881566 @default.
- W2904217677 hasConcept C105795698 @default.
- W2904217677 hasConcept C107673813 @default.
- W2904217677 hasConcept C11413529 @default.
- W2904217677 hasConcept C117251300 @default.
- W2904217677 hasConcept C121332964 @default.
- W2904217677 hasConcept C124101348 @default.
- W2904217677 hasConcept C126255220 @default.
- W2904217677 hasConcept C149782125 @default.
- W2904217677 hasConcept C154945302 @default.
- W2904217677 hasConcept C160234255 @default.
- W2904217677 hasConcept C163716315 @default.
- W2904217677 hasConcept C165064840 @default.
- W2904217677 hasConcept C179254644 @default.
- W2904217677 hasConcept C22243797 @default.
- W2904217677 hasConcept C33923547 @default.
- W2904217677 hasConcept C37903108 @default.
- W2904217677 hasConcept C41008148 @default.
- W2904217677 hasConcept C45374587 @default.
- W2904217677 hasConcept C62520636 @default.
- W2904217677 hasConcept C74650414 @default.
- W2904217677 hasConcept C92424840 @default.
- W2904217677 hasConceptScore W2904217677C105795698 @default.
- W2904217677 hasConceptScore W2904217677C107673813 @default.
- W2904217677 hasConceptScore W2904217677C11413529 @default.
- W2904217677 hasConceptScore W2904217677C117251300 @default.
- W2904217677 hasConceptScore W2904217677C121332964 @default.
- W2904217677 hasConceptScore W2904217677C124101348 @default.
- W2904217677 hasConceptScore W2904217677C126255220 @default.
- W2904217677 hasConceptScore W2904217677C149782125 @default.
- W2904217677 hasConceptScore W2904217677C154945302 @default.
- W2904217677 hasConceptScore W2904217677C160234255 @default.
- W2904217677 hasConceptScore W2904217677C163716315 @default.
- W2904217677 hasConceptScore W2904217677C165064840 @default.
- W2904217677 hasConceptScore W2904217677C179254644 @default.
- W2904217677 hasConceptScore W2904217677C22243797 @default.
- W2904217677 hasConceptScore W2904217677C33923547 @default.
- W2904217677 hasConceptScore W2904217677C37903108 @default.
- W2904217677 hasConceptScore W2904217677C41008148 @default.
- W2904217677 hasConceptScore W2904217677C45374587 @default.
- W2904217677 hasConceptScore W2904217677C62520636 @default.
- W2904217677 hasConceptScore W2904217677C74650414 @default.
- W2904217677 hasConceptScore W2904217677C92424840 @default.
- W2904217677 hasLocation W29042176771 @default.
- W2904217677 hasOpenAccess W2904217677 @default.
- W2904217677 hasPrimaryLocation W29042176771 @default.
- W2904217677 hasRelatedWork W1963946881 @default.
- W2904217677 hasRelatedWork W1970172532 @default.
- W2904217677 hasRelatedWork W2037434525 @default.
- W2904217677 hasRelatedWork W2042794667 @default.
- W2904217677 hasRelatedWork W2095893824 @default.
- W2904217677 hasRelatedWork W2145546689 @default.
- W2904217677 hasRelatedWork W2155144949 @default.
- W2904217677 hasRelatedWork W247164096 @default.
- W2904217677 hasRelatedWork W2528681898 @default.
- W2904217677 hasRelatedWork W2613426675 @default.
- W2904217677 hasRelatedWork W2646988773 @default.
- W2904217677 hasRelatedWork W2758388677 @default.
- W2904217677 hasRelatedWork W2954603894 @default.
- W2904217677 hasRelatedWork W2979772252 @default.
- W2904217677 hasRelatedWork W2992905193 @default.
- W2904217677 hasRelatedWork W2997043365 @default.
- W2904217677 hasRelatedWork W3047479021 @default.
- W2904217677 hasRelatedWork W3122202947 @default.
- W2904217677 hasRelatedWork W3123371182 @default.
- W2904217677 hasRelatedWork W585406317 @default.
- W2904217677 isParatext "false" @default.
- W2904217677 isRetracted "false" @default.
- W2904217677 magId "2904217677" @default.