Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904234020> ?p ?o ?g. }
- W2904234020 endingPage "363" @default.
- W2904234020 startingPage "352" @default.
- W2904234020 abstract "Spatial capture-recapture models (SCR) are used to estimate animal density and to investigate a range of problems in spatial ecology that cannot be addressed with traditional nonspatial methods. Bayesian approaches in particular offer tremendous flexibility for SCR modeling. Increasingly, SCR data are being collected over very large spatial extents making analysis computational intensive, sometimes prohibitively so. To mitigate the computational burden of large-scale SCR models, we developed an improved formulation of the Bayesian SCR model that uses local evaluation of the individual state-space (LESS). Based on prior knowledge about a species' home range size, we created square evaluation windows that restrict the spatial domain in which an individual's detection probability (detector window) and activity center location (AC window) are estimated. We used simulations and empirical data analyses to assess the performance and bias of SCR with LESS. LESS produced unbiased estimates of SCR parameters when the AC window width was ≥5σ (σ: the scale parameter of the half-normal detection function), and when the detector window extended beyond the edge of the AC window by 2σ. Importantly, LESS considerably decreased the computation time needed for fitting SCR models. In our simulations, LESS increased the computation speed of SCR models up to 57-fold. We demonstrate the power of this new approach by mapping the density of an elusive large carnivore-the wolverine (Gulo gulo)-with an unprecedented resolution and across the species' entire range in Norway (> 200,000 km2). Our approach helps overcome a major computational obstacle to population and landscape-level SCR analyses. The LESS implementation in a Bayesian framework makes the customization and fitting of SCR accessible for practitioners working at scales that are relevant for conservation and management." @default.
- W2904234020 created "2018-12-22" @default.
- W2904234020 creator A5012368660 @default.
- W2904234020 creator A5026206972 @default.
- W2904234020 creator A5033383545 @default.
- W2904234020 creator A5038305482 @default.
- W2904234020 creator A5041799983 @default.
- W2904234020 creator A5043455911 @default.
- W2904234020 creator A5078591197 @default.
- W2904234020 date "2018-12-18" @default.
- W2904234020 modified "2023-10-16" @default.
- W2904234020 title "A local evaluation of the individual state-space to scale up Bayesian spatial capture-recapture" @default.
- W2904234020 cites W1753120016 @default.
- W2904234020 cites W1976755309 @default.
- W2904234020 cites W1981350897 @default.
- W2904234020 cites W2034427376 @default.
- W2904234020 cites W2037228554 @default.
- W2904234020 cites W2045405291 @default.
- W2904234020 cites W2075825341 @default.
- W2904234020 cites W2086252641 @default.
- W2904234020 cites W2096971206 @default.
- W2904234020 cites W2110900632 @default.
- W2904234020 cites W2111890968 @default.
- W2904234020 cites W2114075052 @default.
- W2904234020 cites W2124666217 @default.
- W2904234020 cites W2148534890 @default.
- W2904234020 cites W2150009594 @default.
- W2904234020 cites W2152561898 @default.
- W2904234020 cites W2168456527 @default.
- W2904234020 cites W2177540592 @default.
- W2904234020 cites W2287000135 @default.
- W2904234020 cites W2317325948 @default.
- W2904234020 cites W2514303448 @default.
- W2904234020 cites W2521312965 @default.
- W2904234020 cites W2552685466 @default.
- W2904234020 cites W2567223998 @default.
- W2904234020 cites W2578392859 @default.
- W2904234020 cites W2600401961 @default.
- W2904234020 cites W2796539682 @default.
- W2904234020 cites W2803265677 @default.
- W2904234020 cites W2904234020 @default.
- W2904234020 cites W2953129820 @default.
- W2904234020 cites W4249731213 @default.
- W2904234020 doi "https://doi.org/10.1002/ece3.4751" @default.
- W2904234020 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6342129" @default.
- W2904234020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30680119" @default.
- W2904234020 hasPublicationYear "2018" @default.
- W2904234020 type Work @default.
- W2904234020 sameAs 2904234020 @default.
- W2904234020 citedByCount "27" @default.
- W2904234020 countsByYear W29042340202019 @default.
- W2904234020 countsByYear W29042340202020 @default.
- W2904234020 countsByYear W29042340202021 @default.
- W2904234020 countsByYear W29042340202022 @default.
- W2904234020 countsByYear W29042340202023 @default.
- W2904234020 crossrefType "journal-article" @default.
- W2904234020 hasAuthorship W2904234020A5012368660 @default.
- W2904234020 hasAuthorship W2904234020A5026206972 @default.
- W2904234020 hasAuthorship W2904234020A5033383545 @default.
- W2904234020 hasAuthorship W2904234020A5038305482 @default.
- W2904234020 hasAuthorship W2904234020A5041799983 @default.
- W2904234020 hasAuthorship W2904234020A5043455911 @default.
- W2904234020 hasAuthorship W2904234020A5078591197 @default.
- W2904234020 hasBestOaLocation W29042340201 @default.
- W2904234020 hasConcept C105795698 @default.
- W2904234020 hasConcept C107673813 @default.
- W2904234020 hasConcept C11413529 @default.
- W2904234020 hasConcept C127413603 @default.
- W2904234020 hasConcept C146978453 @default.
- W2904234020 hasConcept C154945302 @default.
- W2904234020 hasConcept C158709400 @default.
- W2904234020 hasConcept C18903297 @default.
- W2904234020 hasConcept C204323151 @default.
- W2904234020 hasConcept C205649164 @default.
- W2904234020 hasConcept C2778755073 @default.
- W2904234020 hasConcept C33923547 @default.
- W2904234020 hasConcept C41008148 @default.
- W2904234020 hasConcept C45374587 @default.
- W2904234020 hasConcept C58640448 @default.
- W2904234020 hasConcept C86803240 @default.
- W2904234020 hasConceptScore W2904234020C105795698 @default.
- W2904234020 hasConceptScore W2904234020C107673813 @default.
- W2904234020 hasConceptScore W2904234020C11413529 @default.
- W2904234020 hasConceptScore W2904234020C127413603 @default.
- W2904234020 hasConceptScore W2904234020C146978453 @default.
- W2904234020 hasConceptScore W2904234020C154945302 @default.
- W2904234020 hasConceptScore W2904234020C158709400 @default.
- W2904234020 hasConceptScore W2904234020C18903297 @default.
- W2904234020 hasConceptScore W2904234020C204323151 @default.
- W2904234020 hasConceptScore W2904234020C205649164 @default.
- W2904234020 hasConceptScore W2904234020C2778755073 @default.
- W2904234020 hasConceptScore W2904234020C33923547 @default.
- W2904234020 hasConceptScore W2904234020C41008148 @default.
- W2904234020 hasConceptScore W2904234020C45374587 @default.
- W2904234020 hasConceptScore W2904234020C58640448 @default.
- W2904234020 hasConceptScore W2904234020C86803240 @default.
- W2904234020 hasFunder F4320312656 @default.
- W2904234020 hasFunder F4320320835 @default.