Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904235004> ?p ?o ?g. }
- W2904235004 abstract "Targeted resequencing has become the most used and cost-effective approach for identifying causative mutations of Mendelian diseases both for diagnostics and research purposes. Due to very rapid technological progress, NGS laboratories are expanding their capabilities to address the increasing number of analyses. Several open source tools are available to build a generic variant calling pipeline, but a tool able to simultaneously execute multiple analyses, organize, and categorize the samples is still missing. Here we describe VarGenius, a Linux based command line software able to execute customizable pipelines for the analysis of multiple targeted resequencing data using parallel computing. VarGenius provides a database to store the output of the analysis (calling quality statistics, variant annotations, internal allelic variant frequencies) and sample information (personal data, genotypes, phenotypes). VarGenius can also perform the “joint analysis” of hundreds of samples with a single command, drastically reducing the time for the configuration and execution of the analysis. VarGenius executes the standard pipeline of the Genome Analysis Tool-Kit (GATK) best practices (GBP) for germinal variant calling, annotates the variants using Annovar, and generates a user-friendly output displaying the results through a web page. VarGenius has been tested on a parallel computing cluster with 52 machines with 120GB of RAM each. Under this configuration, a 50 M whole exome sequencing (WES) analysis for a family was executed in about 7 h (trio or quartet); a joint analysis of 30 WES in about 24 h and the parallel analysis of 34 single samples from a 1 M panel in about 2 h. We developed VarGenius, a “master” tool that faces the increasing demand of heterogeneous NGS analyses and allows maximum flexibility for downstream analyses. It paves the way to a different kind of analysis, centered on cohorts rather than on singleton. Patient and variant information are stored into the database and any output file can be accessed programmatically. VarGenius can be used for routine analyses by biomedical researchers with basic Linux skills providing additional flexibility for computational biologists to develop their own algorithms for the comparison and analysis of data. The software is freely available at: https://github.com/frankMusacchia/VarGenius" @default.
- W2904235004 created "2018-12-22" @default.
- W2904235004 creator A5003918176 @default.
- W2904235004 creator A5010286920 @default.
- W2904235004 creator A5031979885 @default.
- W2904235004 creator A5035928391 @default.
- W2904235004 creator A5036346252 @default.
- W2904235004 creator A5048934823 @default.
- W2904235004 creator A5051903054 @default.
- W2904235004 creator A5062729918 @default.
- W2904235004 creator A5072146211 @default.
- W2904235004 creator A5075672280 @default.
- W2904235004 creator A5083188517 @default.
- W2904235004 date "2018-12-01" @default.
- W2904235004 modified "2023-10-14" @default.
- W2904235004 title "VarGenius executes cohort-level DNA-seq variant calling and annotation and allows to manage the resulting data through a PostgreSQL database" @default.
- W2904235004 cites W1583240815 @default.
- W2904235004 cites W1919257374 @default.
- W2904235004 cites W1925054293 @default.
- W2904235004 cites W1964426200 @default.
- W2904235004 cites W1965691313 @default.
- W2904235004 cites W1967424408 @default.
- W2904235004 cites W1984068087 @default.
- W2904235004 cites W1991381389 @default.
- W2904235004 cites W2001126413 @default.
- W2904235004 cites W2011582941 @default.
- W2904235004 cites W2038397847 @default.
- W2904235004 cites W2039785774 @default.
- W2904235004 cites W2048279520 @default.
- W2904235004 cites W2056705950 @default.
- W2904235004 cites W2069577154 @default.
- W2904235004 cites W2087588809 @default.
- W2904235004 cites W2102718552 @default.
- W2904235004 cites W2103441770 @default.
- W2904235004 cites W2104549677 @default.
- W2904235004 cites W2113534011 @default.
- W2904235004 cites W2117131162 @default.
- W2904235004 cites W2122732537 @default.
- W2904235004 cites W2131271579 @default.
- W2904235004 cites W2147733682 @default.
- W2904235004 cites W2149992227 @default.
- W2904235004 cites W2152238559 @default.
- W2904235004 cites W2152745352 @default.
- W2904235004 cites W2160995259 @default.
- W2904235004 cites W2256016639 @default.
- W2904235004 cites W2278487942 @default.
- W2904235004 cites W2285078667 @default.
- W2904235004 cites W2286709974 @default.
- W2904235004 cites W2289678372 @default.
- W2904235004 cites W2541448352 @default.
- W2904235004 cites W4247053599 @default.
- W2904235004 cites W4248762244 @default.
- W2904235004 doi "https://doi.org/10.1186/s12859-018-2532-4" @default.
- W2904235004 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6291943" @default.
- W2904235004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30541431" @default.
- W2904235004 hasPublicationYear "2018" @default.
- W2904235004 type Work @default.
- W2904235004 sameAs 2904235004 @default.
- W2904235004 citedByCount "24" @default.
- W2904235004 countsByYear W29042350042019 @default.
- W2904235004 countsByYear W29042350042020 @default.
- W2904235004 countsByYear W29042350042021 @default.
- W2904235004 countsByYear W29042350042022 @default.
- W2904235004 countsByYear W29042350042023 @default.
- W2904235004 crossrefType "journal-article" @default.
- W2904235004 hasAuthorship W2904235004A5003918176 @default.
- W2904235004 hasAuthorship W2904235004A5010286920 @default.
- W2904235004 hasAuthorship W2904235004A5031979885 @default.
- W2904235004 hasAuthorship W2904235004A5035928391 @default.
- W2904235004 hasAuthorship W2904235004A5036346252 @default.
- W2904235004 hasAuthorship W2904235004A5048934823 @default.
- W2904235004 hasAuthorship W2904235004A5051903054 @default.
- W2904235004 hasAuthorship W2904235004A5062729918 @default.
- W2904235004 hasAuthorship W2904235004A5072146211 @default.
- W2904235004 hasAuthorship W2904235004A5075672280 @default.
- W2904235004 hasAuthorship W2904235004A5083188517 @default.
- W2904235004 hasBestOaLocation W29042350041 @default.
- W2904235004 hasConcept C104317684 @default.
- W2904235004 hasConcept C10590036 @default.
- W2904235004 hasConcept C111919701 @default.
- W2904235004 hasConcept C124101348 @default.
- W2904235004 hasConcept C154945302 @default.
- W2904235004 hasConcept C16671776 @default.
- W2904235004 hasConcept C2776321320 @default.
- W2904235004 hasConcept C2777904410 @default.
- W2904235004 hasConcept C41008148 @default.
- W2904235004 hasConcept C43521106 @default.
- W2904235004 hasConcept C501734568 @default.
- W2904235004 hasConcept C54355233 @default.
- W2904235004 hasConcept C77088390 @default.
- W2904235004 hasConcept C86803240 @default.
- W2904235004 hasConceptScore W2904235004C104317684 @default.
- W2904235004 hasConceptScore W2904235004C10590036 @default.
- W2904235004 hasConceptScore W2904235004C111919701 @default.
- W2904235004 hasConceptScore W2904235004C124101348 @default.
- W2904235004 hasConceptScore W2904235004C154945302 @default.
- W2904235004 hasConceptScore W2904235004C16671776 @default.
- W2904235004 hasConceptScore W2904235004C2776321320 @default.
- W2904235004 hasConceptScore W2904235004C2777904410 @default.
- W2904235004 hasConceptScore W2904235004C41008148 @default.