Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904236883> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2904236883 abstract "Sentiment analysis is the process of analyzing people's sentiments, opinions, evaluations and emotions by studying their written text. It attracts the interest of many researchers, since it is useful for many applications, ranging from decision making to product evaluation to mention a few. Sentiment analysis can be conducted using machine-learning techniques, lexicon-based techniques or hybrid techniques that combines both. As people are more reliant on social networks such as Twitter, this has become a valuable source for sentiment analysis. However, the existence of big data frameworks require adaptation of these techniques to run within such frameworks. This paper reviews sentiment analysis techniques, focusing on the MapReduce-based analysis techniques. We found that the Naive Bayes algorithm was the most used machine learning technique for extracting sentiments from big datasets because of its high accuracy rates. However, the dictionary-based techniques achieved better results in terms of execution time." @default.
- W2904236883 created "2018-12-22" @default.
- W2904236883 creator A5004537635 @default.
- W2904236883 creator A5058590124 @default.
- W2904236883 creator A5062695565 @default.
- W2904236883 date "2018-12-10" @default.
- W2904236883 modified "2023-10-14" @default.
- W2904236883 title "Sentiment Analysis Based on MapReduce" @default.
- W2904236883 cites W1750239605 @default.
- W2904236883 cites W1901541308 @default.
- W2904236883 cites W1984099576 @default.
- W2904236883 cites W2019759670 @default.
- W2904236883 cites W2326761481 @default.
- W2904236883 cites W2387022776 @default.
- W2904236883 cites W2406624406 @default.
- W2904236883 cites W2512317583 @default.
- W2904236883 cites W2560592988 @default.
- W2904236883 cites W2590061102 @default.
- W2904236883 cites W2766332866 @default.
- W2904236883 cites W2900420237 @default.
- W2904236883 doi "https://doi.org/10.1145/3291280.3291795" @default.
- W2904236883 hasPublicationYear "2018" @default.
- W2904236883 type Work @default.
- W2904236883 sameAs 2904236883 @default.
- W2904236883 citedByCount "2" @default.
- W2904236883 countsByYear W29042368832019 @default.
- W2904236883 countsByYear W29042368832022 @default.
- W2904236883 crossrefType "proceedings-article" @default.
- W2904236883 hasAuthorship W2904236883A5004537635 @default.
- W2904236883 hasAuthorship W2904236883A5058590124 @default.
- W2904236883 hasAuthorship W2904236883A5062695565 @default.
- W2904236883 hasConcept C154945302 @default.
- W2904236883 hasConcept C41008148 @default.
- W2904236883 hasConceptScore W2904236883C154945302 @default.
- W2904236883 hasConceptScore W2904236883C41008148 @default.
- W2904236883 hasLocation W29042368831 @default.
- W2904236883 hasOpenAccess W2904236883 @default.
- W2904236883 hasPrimaryLocation W29042368831 @default.
- W2904236883 hasRelatedWork W2093578348 @default.
- W2904236883 hasRelatedWork W2350741829 @default.
- W2904236883 hasRelatedWork W2358668433 @default.
- W2904236883 hasRelatedWork W2376932109 @default.
- W2904236883 hasRelatedWork W2382290278 @default.
- W2904236883 hasRelatedWork W2390279801 @default.
- W2904236883 hasRelatedWork W2748952813 @default.
- W2904236883 hasRelatedWork W2766271392 @default.
- W2904236883 hasRelatedWork W2899084033 @default.
- W2904236883 hasRelatedWork W3107474891 @default.
- W2904236883 isParatext "false" @default.
- W2904236883 isRetracted "false" @default.
- W2904236883 magId "2904236883" @default.
- W2904236883 workType "article" @default.