Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904243931> ?p ?o ?g. }
- W2904243931 endingPage "2385" @default.
- W2904243931 startingPage "2375" @default.
- W2904243931 abstract "GABAA receptors (GABAARs) are pentameric ligand-gated ion channels that mediate synaptic inhibition throughout the central nervous system. The α1β2γ2 receptor is the major subtype in the brain; GABA binds at the β2(+)α1(−) interface. The structure of the homomeric β3 GABAAR, which is not activated by GABA, has been solved. Recently, four additional heteromeric structures were reported, highlighting key residues required for agonist binding. Here, we used a protein engineering method, taking advantage of knowledge of the key binding residues, to create a β3(+)α1(−) heteromeric interface in the homomeric human β3 GABAAR that enables GABA-mediated activation. Substitutions were made in the complementary side of the orthosteric binding site in loop D (Y87F and Q89R), loop E (G152T), and loop G (N66D and A70T). The Q89R and G152T combination enabled low-potency activation by GABA and potentiation by propofol but impaired direct activation by higher propofol concentrations. At higher concentrations, GABA inhibited gating of β3 GABAAR variants containing Y87F, Q89R, and G152T. Reversion of Phe87 to tyrosine abolished GABA’s inhibitory effect and partially recovered direct activation by propofol. This tyrosine is conserved in homomeric GABAARs and in the Erwinia chrysanthemi ligand-gated ion channel and may be essential for the absence of an inhibitory effect of GABA on homomeric channels. This work demonstrated that only two substitutions, Q89R and G152T, in β3 GABAAR are sufficient to reconstitute GABA-mediated activation and suggests that Tyr87 prevents inhibitory effects of GABA. GABAA receptors (GABAARs) are pentameric ligand-gated ion channels that mediate synaptic inhibition throughout the central nervous system. The α1β2γ2 receptor is the major subtype in the brain; GABA binds at the β2(+)α1(−) interface. The structure of the homomeric β3 GABAAR, which is not activated by GABA, has been solved. Recently, four additional heteromeric structures were reported, highlighting key residues required for agonist binding. Here, we used a protein engineering method, taking advantage of knowledge of the key binding residues, to create a β3(+)α1(−) heteromeric interface in the homomeric human β3 GABAAR that enables GABA-mediated activation. Substitutions were made in the complementary side of the orthosteric binding site in loop D (Y87F and Q89R), loop E (G152T), and loop G (N66D and A70T). The Q89R and G152T combination enabled low-potency activation by GABA and potentiation by propofol but impaired direct activation by higher propofol concentrations. At higher concentrations, GABA inhibited gating of β3 GABAAR variants containing Y87F, Q89R, and G152T. Reversion of Phe87 to tyrosine abolished GABA’s inhibitory effect and partially recovered direct activation by propofol. This tyrosine is conserved in homomeric GABAARs and in the Erwinia chrysanthemi ligand-gated ion channel and may be essential for the absence of an inhibitory effect of GABA on homomeric channels. This work demonstrated that only two substitutions, Q89R and G152T, in β3 GABAAR are sufficient to reconstitute GABA-mediated activation and suggests that Tyr87 prevents inhibitory effects of GABA." @default.
- W2904243931 created "2018-12-22" @default.
- W2904243931 creator A5013778226 @default.
- W2904243931 creator A5040711018 @default.
- W2904243931 creator A5054909369 @default.
- W2904243931 creator A5080714525 @default.
- W2904243931 date "2019-02-01" @default.
- W2904243931 modified "2023-09-30" @default.
- W2904243931 title "Amino acid substitutions in the human homomeric β3 GABAA receptor that enable activation by GABA" @default.
- W2904243931 cites W1700632323 @default.
- W2904243931 cites W1941659122 @default.
- W2904243931 cites W1950332654 @default.
- W2904243931 cites W1964096618 @default.
- W2904243931 cites W1971422019 @default.
- W2904243931 cites W1971528038 @default.
- W2904243931 cites W1972901946 @default.
- W2904243931 cites W1975239375 @default.
- W2904243931 cites W1982371070 @default.
- W2904243931 cites W1986191025 @default.
- W2904243931 cites W1986555537 @default.
- W2904243931 cites W1988139687 @default.
- W2904243931 cites W1988744515 @default.
- W2904243931 cites W1989578288 @default.
- W2904243931 cites W1991218133 @default.
- W2904243931 cites W1991871283 @default.
- W2904243931 cites W1998885660 @default.
- W2904243931 cites W1999125786 @default.
- W2904243931 cites W1999605300 @default.
- W2904243931 cites W1999613945 @default.
- W2904243931 cites W2017450378 @default.
- W2904243931 cites W2023730096 @default.
- W2904243931 cites W2024852738 @default.
- W2904243931 cites W2032158727 @default.
- W2904243931 cites W2044866059 @default.
- W2904243931 cites W2051919399 @default.
- W2904243931 cites W2058571413 @default.
- W2904243931 cites W2058825628 @default.
- W2904243931 cites W2064190418 @default.
- W2904243931 cites W2068249507 @default.
- W2904243931 cites W2085877716 @default.
- W2904243931 cites W2086126018 @default.
- W2904243931 cites W2086350824 @default.
- W2904243931 cites W2092273976 @default.
- W2904243931 cites W2093056324 @default.
- W2904243931 cites W2094976299 @default.
- W2904243931 cites W2101268699 @default.
- W2904243931 cites W2132926880 @default.
- W2904243931 cites W2133526968 @default.
- W2904243931 cites W2133746597 @default.
- W2904243931 cites W2137448487 @default.
- W2904243931 cites W2138918820 @default.
- W2904243931 cites W2143014450 @default.
- W2904243931 cites W2146417583 @default.
- W2904243931 cites W2148598721 @default.
- W2904243931 cites W2150456903 @default.
- W2904243931 cites W2161846844 @default.
- W2904243931 cites W2266553557 @default.
- W2904243931 cites W22858113 @default.
- W2904243931 cites W2405413470 @default.
- W2904243931 cites W2407596837 @default.
- W2904243931 cites W2565090137 @default.
- W2904243931 cites W2810911197 @default.
- W2904243931 cites W2883936328 @default.
- W2904243931 cites W4211156111 @default.
- W2904243931 doi "https://doi.org/10.1074/jbc.ra118.006229" @default.
- W2904243931 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6378970" @default.
- W2904243931 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30545943" @default.
- W2904243931 hasPublicationYear "2019" @default.
- W2904243931 type Work @default.
- W2904243931 sameAs 2904243931 @default.
- W2904243931 citedByCount "4" @default.
- W2904243931 countsByYear W29042439312020 @default.
- W2904243931 countsByYear W29042439312021 @default.
- W2904243931 countsByYear W29042439312022 @default.
- W2904243931 countsByYear W29042439312023 @default.
- W2904243931 crossrefType "journal-article" @default.
- W2904243931 hasAuthorship W2904243931A5013778226 @default.
- W2904243931 hasAuthorship W2904243931A5040711018 @default.
- W2904243931 hasAuthorship W2904243931A5054909369 @default.
- W2904243931 hasAuthorship W2904243931A5080714525 @default.
- W2904243931 hasBestOaLocation W29042439311 @default.
- W2904243931 hasConcept C104292427 @default.
- W2904243931 hasConcept C104317684 @default.
- W2904243931 hasConcept C12554922 @default.
- W2904243931 hasConcept C168258287 @default.
- W2904243931 hasConcept C169760540 @default.
- W2904243931 hasConcept C170493617 @default.
- W2904243931 hasConcept C17077164 @default.
- W2904243931 hasConcept C185592680 @default.
- W2904243931 hasConcept C2776104367 @default.
- W2904243931 hasConcept C2778938600 @default.
- W2904243931 hasConcept C50254741 @default.
- W2904243931 hasConcept C55493867 @default.
- W2904243931 hasConcept C82617044 @default.
- W2904243931 hasConcept C86803240 @default.
- W2904243931 hasConcept C95444343 @default.
- W2904243931 hasConceptScore W2904243931C104292427 @default.
- W2904243931 hasConceptScore W2904243931C104317684 @default.