Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904253362> ?p ?o ?g. }
- W2904253362 endingPage "793" @default.
- W2904253362 startingPage "779" @default.
- W2904253362 abstract "Tech mining is the application of text mining tools to science and technology information resources. The ever-increasing volume of scientific outputs is a boom to technological innovation, but it also complicates efforts to obtain useful and concise information for problem solving. This challenge extends to tech mining, where the development of techniques compatible with big data is an urgent issue. This article introduces a semi-supervised method for extracting layered technological information from scientific papers in order to extend the reach of tech mining. Our method starts with several pre-set seed patterns used to extract candidate phrases by matching the dependency tree of each sentence. Then, after a series of judgements, phrases are divided into two categories: ‘main technique’ and ‘tech-component’. (A technique, for the purposes of this study, is a method or tool used in the article being analysed.) In order to generate new patterns for subsequent iterations, a weighted pattern learning method is also adopted. Finally, multiple iterations of the method are applied to extract technological information from each paper. A dataset from the field of optical switcher is used to verify the method’s effectiveness. Our findings are that (1) by two loops of extraction process in each iteration, our method realises the layered technological information extraction, which contains the ‘part–whole’ relationships between main techniques and tech-components; (2) the recall rate for main techniques is superior to the baseline after iterating 23 rounds; (3) when layering is disregarded, in the aspect of the precision and the volume of techniques, the new method is higher than that for the baseline; and (4) adjusting another two parameters can optimise the efficiency – however, the effect is neither pronounced nor straightforward." @default.
- W2904253362 created "2018-12-22" @default.
- W2904253362 creator A5002661071 @default.
- W2904253362 creator A5019302880 @default.
- W2904253362 creator A5024792434 @default.
- W2904253362 creator A5064530949 @default.
- W2904253362 date "2018-12-12" @default.
- W2904253362 modified "2023-09-23" @default.
- W2904253362 title "Mining layered technological information in scientific papers: A semi-supervised method" @default.
- W2904253362 cites W1982666937 @default.
- W2904253362 cites W1993187818 @default.
- W2904253362 cites W2022732522 @default.
- W2904253362 cites W2032889385 @default.
- W2904253362 cites W2053403152 @default.
- W2904253362 cites W2098679902 @default.
- W2904253362 cites W2108454922 @default.
- W2904253362 cites W2136652593 @default.
- W2904253362 cites W2148622810 @default.
- W2904253362 cites W2155276279 @default.
- W2904253362 cites W2157104236 @default.
- W2904253362 cites W220067801 @default.
- W2904253362 cites W2278764098 @default.
- W2904253362 cites W2339064014 @default.
- W2904253362 cites W2546651658 @default.
- W2904253362 cites W2556858158 @default.
- W2904253362 cites W2585443287 @default.
- W2904253362 cites W2597836142 @default.
- W2904253362 cites W2598049738 @default.
- W2904253362 cites W2605389978 @default.
- W2904253362 cites W2614787793 @default.
- W2904253362 cites W2730000420 @default.
- W2904253362 cites W2734796195 @default.
- W2904253362 cites W2761702546 @default.
- W2904253362 cites W2792220932 @default.
- W2904253362 doi "https://doi.org/10.1177/0165551518816941" @default.
- W2904253362 hasPublicationYear "2018" @default.
- W2904253362 type Work @default.
- W2904253362 sameAs 2904253362 @default.
- W2904253362 citedByCount "0" @default.
- W2904253362 crossrefType "journal-article" @default.
- W2904253362 hasAuthorship W2904253362A5002661071 @default.
- W2904253362 hasAuthorship W2904253362A5019302880 @default.
- W2904253362 hasAuthorship W2904253362A5024792434 @default.
- W2904253362 hasAuthorship W2904253362A5064530949 @default.
- W2904253362 hasConcept C105795698 @default.
- W2904253362 hasConcept C111919701 @default.
- W2904253362 hasConcept C121332964 @default.
- W2904253362 hasConcept C124101348 @default.
- W2904253362 hasConcept C127413603 @default.
- W2904253362 hasConcept C141441539 @default.
- W2904253362 hasConcept C154945302 @default.
- W2904253362 hasConcept C165064840 @default.
- W2904253362 hasConcept C177264268 @default.
- W2904253362 hasConcept C195807954 @default.
- W2904253362 hasConcept C199360897 @default.
- W2904253362 hasConcept C202444582 @default.
- W2904253362 hasConcept C20556612 @default.
- W2904253362 hasConcept C23123220 @default.
- W2904253362 hasConcept C2522767166 @default.
- W2904253362 hasConcept C2777530160 @default.
- W2904253362 hasConcept C33923547 @default.
- W2904253362 hasConcept C41008148 @default.
- W2904253362 hasConcept C62520636 @default.
- W2904253362 hasConcept C81669768 @default.
- W2904253362 hasConcept C87717796 @default.
- W2904253362 hasConcept C9652623 @default.
- W2904253362 hasConcept C98045186 @default.
- W2904253362 hasConceptScore W2904253362C105795698 @default.
- W2904253362 hasConceptScore W2904253362C111919701 @default.
- W2904253362 hasConceptScore W2904253362C121332964 @default.
- W2904253362 hasConceptScore W2904253362C124101348 @default.
- W2904253362 hasConceptScore W2904253362C127413603 @default.
- W2904253362 hasConceptScore W2904253362C141441539 @default.
- W2904253362 hasConceptScore W2904253362C154945302 @default.
- W2904253362 hasConceptScore W2904253362C165064840 @default.
- W2904253362 hasConceptScore W2904253362C177264268 @default.
- W2904253362 hasConceptScore W2904253362C195807954 @default.
- W2904253362 hasConceptScore W2904253362C199360897 @default.
- W2904253362 hasConceptScore W2904253362C202444582 @default.
- W2904253362 hasConceptScore W2904253362C20556612 @default.
- W2904253362 hasConceptScore W2904253362C23123220 @default.
- W2904253362 hasConceptScore W2904253362C2522767166 @default.
- W2904253362 hasConceptScore W2904253362C2777530160 @default.
- W2904253362 hasConceptScore W2904253362C33923547 @default.
- W2904253362 hasConceptScore W2904253362C41008148 @default.
- W2904253362 hasConceptScore W2904253362C62520636 @default.
- W2904253362 hasConceptScore W2904253362C81669768 @default.
- W2904253362 hasConceptScore W2904253362C87717796 @default.
- W2904253362 hasConceptScore W2904253362C9652623 @default.
- W2904253362 hasConceptScore W2904253362C98045186 @default.
- W2904253362 hasIssue "6" @default.
- W2904253362 hasLocation W29042533621 @default.
- W2904253362 hasOpenAccess W2904253362 @default.
- W2904253362 hasPrimaryLocation W29042533621 @default.
- W2904253362 hasRelatedWork W159132833 @default.
- W2904253362 hasRelatedWork W1788528807 @default.
- W2904253362 hasRelatedWork W2001121861 @default.
- W2904253362 hasRelatedWork W2153799433 @default.