Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904260071> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2904260071 abstract "A fully convolutional neural networks (FCN)-based automated image analysis algorithm to discriminate between head and neck cancer and noncancerous epithelium based on nonlinear microscopic images was developed.Head and neck cancer sections were used for standard histopathology and co-registered with multimodal images from the same sections using the combination of coherent anti-Stokes Raman scattering, two-photon excited fluorescence, and second harmonic generation microscopy. The images analyzed with semantic segmentation using a FCN for four classes: cancer, normal epithelium, background, and other tissue types.A total of 114 images of 12 patients were analyzed. Using a patch score aggregation, the average recognition rate and an overall recognition rate or the four classes were 88.9% and 86.7%, respectively. A total of 113 seconds were needed to process a whole-slice image in the dataset.Multimodal nonlinear microscopy in combination with automated image analysis using FCN seems to be a promising technique for objective differentiation between head and neck cancer and noncancerous epithelium." @default.
- W2904260071 created "2018-12-22" @default.
- W2904260071 creator A5005568675 @default.
- W2904260071 creator A5018098456 @default.
- W2904260071 creator A5024934744 @default.
- W2904260071 creator A5034502482 @default.
- W2904260071 creator A5068182511 @default.
- W2904260071 creator A5070006022 @default.
- W2904260071 creator A5074991092 @default.
- W2904260071 creator A5086005802 @default.
- W2904260071 date "2018-12-12" @default.
- W2904260071 modified "2023-10-14" @default.
- W2904260071 title "Fully convolutional networks in multimodal nonlinear microscopy images for automated detection of head and neck carcinoma: A pilot study" @default.
- W2904260071 cites W1968064792 @default.
- W2904260071 cites W1981336396 @default.
- W2904260071 cites W2007808596 @default.
- W2904260071 cites W2066188816 @default.
- W2904260071 cites W2091531908 @default.
- W2904260071 cites W2111291469 @default.
- W2904260071 cites W2122132328 @default.
- W2904260071 cites W2134611841 @default.
- W2904260071 cites W2144917539 @default.
- W2904260071 cites W2180229329 @default.
- W2904260071 cites W2308025982 @default.
- W2904260071 cites W2341580234 @default.
- W2904260071 cites W2463409887 @default.
- W2904260071 cites W2470043828 @default.
- W2904260071 cites W2493563732 @default.
- W2904260071 cites W2605552373 @default.
- W2904260071 doi "https://doi.org/10.1002/hed.25489" @default.
- W2904260071 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30548511" @default.
- W2904260071 hasPublicationYear "2018" @default.
- W2904260071 type Work @default.
- W2904260071 sameAs 2904260071 @default.
- W2904260071 citedByCount "18" @default.
- W2904260071 countsByYear W29042600712019 @default.
- W2904260071 countsByYear W29042600712020 @default.
- W2904260071 countsByYear W29042600712021 @default.
- W2904260071 countsByYear W29042600712022 @default.
- W2904260071 countsByYear W29042600712023 @default.
- W2904260071 crossrefType "journal-article" @default.
- W2904260071 hasAuthorship W2904260071A5005568675 @default.
- W2904260071 hasAuthorship W2904260071A5018098456 @default.
- W2904260071 hasAuthorship W2904260071A5024934744 @default.
- W2904260071 hasAuthorship W2904260071A5034502482 @default.
- W2904260071 hasAuthorship W2904260071A5068182511 @default.
- W2904260071 hasAuthorship W2904260071A5070006022 @default.
- W2904260071 hasAuthorship W2904260071A5074991092 @default.
- W2904260071 hasAuthorship W2904260071A5086005802 @default.
- W2904260071 hasConcept C142724271 @default.
- W2904260071 hasConcept C147080431 @default.
- W2904260071 hasConcept C153180895 @default.
- W2904260071 hasConcept C154945302 @default.
- W2904260071 hasConcept C31972630 @default.
- W2904260071 hasConcept C41008148 @default.
- W2904260071 hasConcept C71924100 @default.
- W2904260071 hasConcept C81363708 @default.
- W2904260071 hasConcept C89600930 @default.
- W2904260071 hasConceptScore W2904260071C142724271 @default.
- W2904260071 hasConceptScore W2904260071C147080431 @default.
- W2904260071 hasConceptScore W2904260071C153180895 @default.
- W2904260071 hasConceptScore W2904260071C154945302 @default.
- W2904260071 hasConceptScore W2904260071C31972630 @default.
- W2904260071 hasConceptScore W2904260071C41008148 @default.
- W2904260071 hasConceptScore W2904260071C71924100 @default.
- W2904260071 hasConceptScore W2904260071C81363708 @default.
- W2904260071 hasConceptScore W2904260071C89600930 @default.
- W2904260071 hasFunder F4320320879 @default.
- W2904260071 hasLocation W29042600711 @default.
- W2904260071 hasLocation W29042600712 @default.
- W2904260071 hasOpenAccess W2904260071 @default.
- W2904260071 hasPrimaryLocation W29042600711 @default.
- W2904260071 hasRelatedWork W1669643531 @default.
- W2904260071 hasRelatedWork W2005437358 @default.
- W2904260071 hasRelatedWork W2008656436 @default.
- W2904260071 hasRelatedWork W2039154422 @default.
- W2904260071 hasRelatedWork W2122581818 @default.
- W2904260071 hasRelatedWork W2134924024 @default.
- W2904260071 hasRelatedWork W2517104666 @default.
- W2904260071 hasRelatedWork W2895616727 @default.
- W2904260071 hasRelatedWork W3095523211 @default.
- W2904260071 hasRelatedWork W2182382398 @default.
- W2904260071 isParatext "false" @default.
- W2904260071 isRetracted "false" @default.
- W2904260071 magId "2904260071" @default.
- W2904260071 workType "article" @default.