Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904264809> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2904264809 abstract "Background Chronic Heart Failure (CHF) is one of the leading cause of hospitalizations and deaths, more especially in old people, and this causes a substantial clinical and economic burden to the government. Using risk prediction models to accurately understand the dynamics of survival patterns amongst patients with CHF conditions would provide guidance to health care professionals in decision making on how to improve delivery of care. However, prediction models used in medical research often fail to accurately predict health outcomes due to methodological limitations. These models particularly perform poorly when predicting narrowly targeted subgroups of patients. We explore the role of latent class regression (LCR) analysis to model the survival of patients with CHF. We seek to show that using LCR improves the modelling of health outcomes as it accounts for unobserved heterogeneity that exists naturally within the patient data. Methods LCR generally involves identifying hidden latent classes within data and uses patient’s demographic characteristics and other covariates to predict class membership and separate regression models for each class. These latent classes may correspond to subgroups of patients with specific characteristics that affect their survival. The rationale is that one class will be more susceptible to deaths compared to another. The United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-HEART) recruited patients with signs and symptoms of CHF between July 2006 and December 2014. A total of 1802 records were available on patient characteristics as well as medications. We used some of these variables to model survival of patients within a latent class framework by estimating a single regression model for both latent classes. We increased complexity of our model by allowing each class to have a separate survival model. Results We used the area under the receiver operating characteristic (ROC) curve to assess the performance of these two class models. Overall, our novel approach performed better than the traditional one-model-fits-all approach. Our model gave an area under the curve (AUC) of 0.87 while the traditional model yielded an AUC of 0.68. Conclusion Ignoring the natural heterogeneity that exists within the patient data affects the accuracy of estimates in prediction models. Researchers can utilise the available data to identify hidden latent classes within the data. Fitting a regression model to each latent class improves the accuracy of the prediction estimates." @default.
- W2904264809 created "2018-12-22" @default.
- W2904264809 creator A5019464619 @default.
- W2904264809 creator A5039114008 @default.
- W2904264809 creator A5055315918 @default.
- W2904264809 creator A5075459581 @default.
- W2904264809 creator A5078715263 @default.
- W2904264809 date "2018-09-01" @default.
- W2904264809 modified "2023-09-24" @default.
- W2904264809 title "P15 Latent class regression modelling: a novel approach to predict survival in patients with chronic heart failure (CHF)" @default.
- W2904264809 doi "https://doi.org/10.1136/jech-2018-ssmabstracts.141" @default.
- W2904264809 hasPublicationYear "2018" @default.
- W2904264809 type Work @default.
- W2904264809 sameAs 2904264809 @default.
- W2904264809 citedByCount "0" @default.
- W2904264809 crossrefType "proceedings-article" @default.
- W2904264809 hasAuthorship W2904264809A5019464619 @default.
- W2904264809 hasAuthorship W2904264809A5039114008 @default.
- W2904264809 hasAuthorship W2904264809A5055315918 @default.
- W2904264809 hasAuthorship W2904264809A5075459581 @default.
- W2904264809 hasAuthorship W2904264809A5078715263 @default.
- W2904264809 hasBestOaLocation W29042648091 @default.
- W2904264809 hasConcept C105795698 @default.
- W2904264809 hasConcept C119043178 @default.
- W2904264809 hasConcept C119857082 @default.
- W2904264809 hasConcept C126322002 @default.
- W2904264809 hasConcept C138885662 @default.
- W2904264809 hasConcept C152877465 @default.
- W2904264809 hasConcept C177713679 @default.
- W2904264809 hasConcept C2778137410 @default.
- W2904264809 hasConcept C2778198053 @default.
- W2904264809 hasConcept C33923547 @default.
- W2904264809 hasConcept C41008148 @default.
- W2904264809 hasConcept C41895202 @default.
- W2904264809 hasConcept C70727504 @default.
- W2904264809 hasConcept C71924100 @default.
- W2904264809 hasConcept C83546350 @default.
- W2904264809 hasConceptScore W2904264809C105795698 @default.
- W2904264809 hasConceptScore W2904264809C119043178 @default.
- W2904264809 hasConceptScore W2904264809C119857082 @default.
- W2904264809 hasConceptScore W2904264809C126322002 @default.
- W2904264809 hasConceptScore W2904264809C138885662 @default.
- W2904264809 hasConceptScore W2904264809C152877465 @default.
- W2904264809 hasConceptScore W2904264809C177713679 @default.
- W2904264809 hasConceptScore W2904264809C2778137410 @default.
- W2904264809 hasConceptScore W2904264809C2778198053 @default.
- W2904264809 hasConceptScore W2904264809C33923547 @default.
- W2904264809 hasConceptScore W2904264809C41008148 @default.
- W2904264809 hasConceptScore W2904264809C41895202 @default.
- W2904264809 hasConceptScore W2904264809C70727504 @default.
- W2904264809 hasConceptScore W2904264809C71924100 @default.
- W2904264809 hasConceptScore W2904264809C83546350 @default.
- W2904264809 hasLocation W29042648091 @default.
- W2904264809 hasOpenAccess W2904264809 @default.
- W2904264809 hasPrimaryLocation W29042648091 @default.
- W2904264809 hasRelatedWork W2010638336 @default.
- W2904264809 hasRelatedWork W2070699080 @default.
- W2904264809 hasRelatedWork W2107985029 @default.
- W2904264809 hasRelatedWork W2316704084 @default.
- W2904264809 hasRelatedWork W2336254838 @default.
- W2904264809 hasRelatedWork W2539131618 @default.
- W2904264809 hasRelatedWork W2782445239 @default.
- W2904264809 hasRelatedWork W3162813319 @default.
- W2904264809 hasRelatedWork W3204172510 @default.
- W2904264809 hasRelatedWork W2895792394 @default.
- W2904264809 isParatext "false" @default.
- W2904264809 isRetracted "false" @default.
- W2904264809 magId "2904264809" @default.
- W2904264809 workType "article" @default.