Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904266989> ?p ?o ?g. }
- W2904266989 endingPage "4617" @default.
- W2904266989 startingPage "4604" @default.
- W2904266989 abstract "Researchers constantly seek more efficient detection techniques to better utilize enhanced image resolution in accurately detecting and monitoring land cover. Recently, convolutional neural networks (CNNs) have shown high performances comparable to or even better than widely used and adopted machine learning techniques. The aim of this study is to investigate the application of CNNs for land cover classification by using two-dimensional (2-D) spectral curve graphs from multispectral satellite images. The land cover classification was conducted in Concord, New Hampshire, USA, and South Korea by using multispectral images acquired from 30-m Landsat-8 and 500-m Geostationary Ocean Color Imager images. For the construction of input data specific to CNNs, two seasons (winter and summer) of multispectral bands were transformed into 2-D spectral curve graphs for each class. Land cover classification results of CNNs were compared with the results of support vector machines (SVMs) and random forest (RFs). The CNNs model showed higher performance than RFs and SVMs in both study sites. The examination of land cover classification maps demonstrates a good agreement with reference maps, Google Earth images, and existing global scale land cover map, especially for croplands. Using the spectral curve graph could incorporate the phenological cycles on classifying the land cover types. This study shows that the use of a new transformation of spectral bands into a 2-D form for application in CNNs can improve land cover classification performance." @default.
- W2904266989 created "2018-12-22" @default.
- W2904266989 creator A5007044119 @default.
- W2904266989 creator A5034853467 @default.
- W2904266989 creator A5054915476 @default.
- W2904266989 creator A5061110444 @default.
- W2904266989 creator A5069161853 @default.
- W2904266989 creator A5069853964 @default.
- W2904266989 creator A5071565090 @default.
- W2904266989 creator A5072574087 @default.
- W2904266989 date "2018-12-01" @default.
- W2904266989 modified "2023-10-16" @default.
- W2904266989 title "Convolutional Neural Network-Based Land Cover Classification Using 2-D Spectral Reflectance Curve Graphs With Multitemporal Satellite Imagery" @default.
- W2904266989 cites W1483493965 @default.
- W2904266989 cites W1964206146 @default.
- W2904266989 cites W1977345771 @default.
- W2904266989 cites W1991247706 @default.
- W2904266989 cites W2001510610 @default.
- W2904266989 cites W2001656479 @default.
- W2904266989 cites W2008645757 @default.
- W2904266989 cites W2009235968 @default.
- W2904266989 cites W2010797227 @default.
- W2904266989 cites W2012950829 @default.
- W2904266989 cites W2021774708 @default.
- W2904266989 cites W2023912087 @default.
- W2904266989 cites W2025803711 @default.
- W2904266989 cites W2029332336 @default.
- W2904266989 cites W2033644819 @default.
- W2904266989 cites W2036632898 @default.
- W2904266989 cites W2042692910 @default.
- W2904266989 cites W2045601456 @default.
- W2904266989 cites W2046113982 @default.
- W2904266989 cites W2057110560 @default.
- W2904266989 cites W2058213690 @default.
- W2904266989 cites W2062236242 @default.
- W2904266989 cites W2063907334 @default.
- W2904266989 cites W2064578974 @default.
- W2904266989 cites W2067593534 @default.
- W2904266989 cites W2071560438 @default.
- W2904266989 cites W2076063813 @default.
- W2904266989 cites W2076917619 @default.
- W2904266989 cites W2077570405 @default.
- W2904266989 cites W2078283574 @default.
- W2904266989 cites W2078877578 @default.
- W2904266989 cites W2083069701 @default.
- W2904266989 cites W2086415250 @default.
- W2904266989 cites W2093378913 @default.
- W2904266989 cites W2098676252 @default.
- W2904266989 cites W2100335098 @default.
- W2904266989 cites W2100469123 @default.
- W2904266989 cites W2102953485 @default.
- W2904266989 cites W2104896032 @default.
- W2904266989 cites W2131039652 @default.
- W2904266989 cites W2140573576 @default.
- W2904266989 cites W2159773298 @default.
- W2904266989 cites W2162231719 @default.
- W2904266989 cites W2221380621 @default.
- W2904266989 cites W2276088792 @default.
- W2904266989 cites W2283002322 @default.
- W2904266989 cites W2292481059 @default.
- W2904266989 cites W2307094448 @default.
- W2904266989 cites W2341130385 @default.
- W2904266989 cites W2415454320 @default.
- W2904266989 cites W2500751094 @default.
- W2904266989 cites W2518030137 @default.
- W2904266989 cites W2589453516 @default.
- W2904266989 cites W2590379360 @default.
- W2904266989 cites W2593356872 @default.
- W2904266989 cites W2604086375 @default.
- W2904266989 cites W2605495192 @default.
- W2904266989 cites W2610166850 @default.
- W2904266989 cites W2613825824 @default.
- W2904266989 cites W2616755213 @default.
- W2904266989 cites W2617645388 @default.
- W2904266989 cites W2618530766 @default.
- W2904266989 cites W2621061298 @default.
- W2904266989 cites W2641842219 @default.
- W2904266989 cites W2734691593 @default.
- W2904266989 cites W2745081071 @default.
- W2904266989 cites W2752696298 @default.
- W2904266989 cites W2754274618 @default.
- W2904266989 cites W2758580191 @default.
- W2904266989 cites W2765283309 @default.
- W2904266989 cites W2792301241 @default.
- W2904266989 cites W2793091350 @default.
- W2904266989 cites W2888214130 @default.
- W2904266989 cites W2895247211 @default.
- W2904266989 cites W2919115771 @default.
- W2904266989 cites W4248710273 @default.
- W2904266989 doi "https://doi.org/10.1109/jstars.2018.2880783" @default.
- W2904266989 hasPublicationYear "2018" @default.
- W2904266989 type Work @default.
- W2904266989 sameAs 2904266989 @default.
- W2904266989 citedByCount "22" @default.
- W2904266989 countsByYear W29042669892019 @default.
- W2904266989 countsByYear W29042669892020 @default.
- W2904266989 countsByYear W29042669892021 @default.
- W2904266989 countsByYear W29042669892022 @default.