Matches in SemOpenAlex for { <https://semopenalex.org/work/W2904278047> ?p ?o ?g. }
- W2904278047 endingPage "45" @default.
- W2904278047 startingPage "1" @default.
- W2904278047 abstract "We formalize a framework of algebraically natural lower bounds for algebraic circuits. Just as with the natural proofs notion of Razborov and Rudich (1997) for Boolean circuit lower bounds, our notion of algebraically natural lower bounds captures nearly all lower bound techniques known. However, unlike in the Boolean setting, there has been no concrete evidence demonstrating that this is a barrier to obtaining super-polynomial lower bounds for general algebraic circuits, as there is little understanding whether algebraic circuits are expressive enough to support “cryptography” secure against algebraic circuits. Following a similar result of Williams (2016) in the Boolean setting, we show that the existence of an algebraic natural proofs barrier is equivalent to the existence of succinct derandomization of the polynomial identity testing problem, that is, to the existence of a hitting set for the class of poly(N)-degree poly(N)-size circuits which consists of coefficient vectors of polynomials of polylog(N) degree with polylog(N)-size circuits. Further, we give an explicit universal construction showing that if such a succinct hitting set exists, then our universal construction suffices. Further, we assess the existing literature constructing hitting sets for restricted classes of algebraic circuits and observe that none of them are succinct as given. Yet, we show how to modify some of these constructions to obtain succinct hitting sets. This constitutes the first evidence supporting the existence of an algebraic natural proofs barrier. Our framework is similar to the Geometric Complexity Theory (GCT) program of Mulmuley and Sohoni (2001), except that here we emphasize constructiveness of the proofs while the GCT program emphasizes symmetry. Nevertheless, our succinct hitting sets have relevance to the GCT program as they imply lower bounds for the complexity of the defining equations of polynomials computed by small circuits. A conference version of this paper appeared in the Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC 2017)." @default.
- W2904278047 created "2018-12-22" @default.
- W2904278047 creator A5004182247 @default.
- W2904278047 creator A5017319217 @default.
- W2904278047 creator A5073175433 @default.
- W2904278047 date "2018-01-01" @default.
- W2904278047 modified "2023-10-15" @default.
- W2904278047 cites W1503731768 @default.
- W2904278047 cites W1576854535 @default.
- W2904278047 cites W1599026900 @default.
- W2904278047 cites W1760203663 @default.
- W2904278047 cites W1968245619 @default.
- W2904278047 cites W1974331311 @default.
- W2904278047 cites W1984477611 @default.
- W2904278047 cites W1991584875 @default.
- W2904278047 cites W1993138363 @default.
- W2904278047 cites W1995511496 @default.
- W2904278047 cites W1998853590 @default.
- W2904278047 cites W2000108234 @default.
- W2904278047 cites W2009994177 @default.
- W2904278047 cites W2015679114 @default.
- W2904278047 cites W2015880590 @default.
- W2904278047 cites W2016576580 @default.
- W2904278047 cites W2020189547 @default.
- W2904278047 cites W2022644058 @default.
- W2904278047 cites W2023541349 @default.
- W2904278047 cites W2023915883 @default.
- W2904278047 cites W2026704052 @default.
- W2904278047 cites W2026944800 @default.
- W2904278047 cites W2027044307 @default.
- W2904278047 cites W2036447017 @default.
- W2904278047 cites W2044997341 @default.
- W2904278047 cites W2055240703 @default.
- W2904278047 cites W2060270693 @default.
- W2904278047 cites W2064885856 @default.
- W2904278047 cites W2070678975 @default.
- W2904278047 cites W2080132708 @default.
- W2904278047 cites W2081256023 @default.
- W2904278047 cites W2082002555 @default.
- W2904278047 cites W2082647621 @default.
- W2904278047 cites W2083820240 @default.
- W2904278047 cites W2085012646 @default.
- W2904278047 cites W2092082049 @default.
- W2904278047 cites W2110206454 @default.
- W2904278047 cites W2110905926 @default.
- W2904278047 cites W2117362057 @default.
- W2904278047 cites W2125495920 @default.
- W2904278047 cites W2128510017 @default.
- W2904278047 cites W2129530428 @default.
- W2904278047 cites W2136589970 @default.
- W2904278047 cites W2137147213 @default.
- W2904278047 cites W2147588253 @default.
- W2904278047 cites W2152772468 @default.
- W2904278047 cites W2163137752 @default.
- W2904278047 cites W2165293955 @default.
- W2904278047 cites W2169939595 @default.
- W2904278047 cites W2213867208 @default.
- W2904278047 cites W2399980850 @default.
- W2904278047 cites W2405068759 @default.
- W2904278047 cites W2490952112 @default.
- W2904278047 cites W2583016001 @default.
- W2904278047 cites W2590079450 @default.
- W2904278047 cites W2611339529 @default.
- W2904278047 cites W2625490399 @default.
- W2904278047 cites W2787135910 @default.
- W2904278047 cites W2950714311 @default.
- W2904278047 cites W2950754397 @default.
- W2904278047 cites W2951995773 @default.
- W2904278047 cites W2962908760 @default.
- W2904278047 cites W2963534336 @default.
- W2904278047 cites W3103519306 @default.
- W2904278047 cites W50958263 @default.
- W2904278047 doi "https://doi.org/10.4086/toc.2018.v014a018" @default.
- W2904278047 hasPublicationYear "2018" @default.
- W2904278047 type Work @default.
- W2904278047 sameAs 2904278047 @default.
- W2904278047 citedByCount "11" @default.
- W2904278047 countsByYear W29042780472019 @default.
- W2904278047 countsByYear W29042780472020 @default.
- W2904278047 countsByYear W29042780472021 @default.
- W2904278047 countsByYear W29042780472022 @default.
- W2904278047 crossrefType "journal-article" @default.
- W2904278047 hasAuthorship W2904278047A5004182247 @default.
- W2904278047 hasAuthorship W2904278047A5017319217 @default.
- W2904278047 hasAuthorship W2904278047A5073175433 @default.
- W2904278047 hasBestOaLocation W29042780471 @default.
- W2904278047 hasConcept C33923547 @default.
- W2904278047 hasConcept C41008148 @default.
- W2904278047 hasConceptScore W2904278047C33923547 @default.
- W2904278047 hasConceptScore W2904278047C41008148 @default.
- W2904278047 hasIssue "1" @default.
- W2904278047 hasLocation W29042780471 @default.
- W2904278047 hasOpenAccess W2904278047 @default.
- W2904278047 hasPrimaryLocation W29042780471 @default.
- W2904278047 hasRelatedWork W1974891317 @default.
- W2904278047 hasRelatedWork W2007596026 @default.
- W2904278047 hasRelatedWork W2044189972 @default.
- W2904278047 hasRelatedWork W2069964982 @default.